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FORWARD

0.1 HOW TO  USE TH IS  BOOK

This is a handbook for learning how to do Rasch measurement. We give some theo
retical explanations, but we emphasize practice. Chapters 2, 4, 5 and 7 use a small prob
lem to illustrate the application o f  Rasch measurement in complete detail. To  those o f 
you who learn best by doing we recommend going directly to Chapters 2 and 4 and 
working through the practical problem developed there. Next study the sections o f 
Chapters 5 and 7 that continue the analysis o f  this problem and then go back to Chapter 1.

Behind the practical procedures o f Rasch measurement are their reasons. The 
methodological issues that motivate and govern Rasch measurement are developed in 
Chapters 1, 5 and 6. To  those o f you who like to begin with theory, we recommend 
reading these chapters before working the problem in Chapters 2 and 4. Finally, i f  Rasch 
measurement is entirely new to you, you might want to begin with Section 0.3 o f this 
Forward which is an introduction to the topic given at the October 28, 1967 ETS Invi
tational Conference on Testing Problems (Wright, 1968).

Section 0.2 reviews the motivation and history o f the ideas that culminated in 
Rasch’s Probabilistic Models fo r  Som e Intelligence and Atta inm ent Tests (1960). The 
references cited there and elsewhere in this book are focused on work that (1 ) bears 
directly on the discussion, (2 ) is in English and (3 ) is either readily available in a uni
versity library or can be supplied by us.

0.2 M O T IV A T IO N  A N D  H IS TO R Y

F ifty  years ago Thorndike complained that contemporary intelligence tests failed to 
specify “ how far it is proper to add, subtract, multiply, divide, and compute ratios with 
the measures obtained.”  (Thorndike, 1926, 1). A  good measurement o f ability would be 
one “ on which zero will represent just not any o f the ability in question, and 1, 2, 3, 4, 
and so on will represent amounts increasing by a constant difference.”  (Thorndike, 1926, 
4). Thorndike had the courage to complain because he believed he had worked out a 
solution to  the problem for his own intelligence test. So did Thurstone (1925).

Thurstone’s method was to transform the proportion in an age group passing any 
item into a unit normal deviate and to use these values as the basis for scaling. Common 
scale values for different age groups were obtained by assuming a linear relationship be
tween the different scale values o f  items shared by two or more test forms using the 
different group means and standard deviations as the parameters for a transformation 
onto a common scale. Thurstone redid a piece o f Thorndike’s work to show that his 
method was better (Thurstone, 1927). His “ absolute scale”  (1925, 1927) yields a more 
or less interval scale. But one which is quite dependent on the ability distribution o f the 
sample used. In addition to item homogeniety, the Thurstone method requires the 
assumption that ability is normally distributed within age groups and that there exist
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relevant fixed population parameters for these distributions. Should the specification o f 
population be inappropriate so will the estimated scale values. Should the sampling o f 
intended populations be inadequate in any way so will the estimated scale values. They 
cannot be invariant to sampling. Samples differing in their ability distributions will pro
duce scale values different in magnitude and dispersion.

Thurstone used the 1925 version o f his method for the rest o f his life, but the major
ity o f  test calibrators have relied on the simpler techniques o f percentile ranks and stand
ard scores. The inadequacies o f these methods were clarified by Loevinger’s 1947 analysis 
o f  the construction and evaluation o f tests o f ability (Loevinger, 1947).

Loevinger showed that test homogeniety and scale monotonicity were essential 
criteria for adequate measurement. In addition, “ An acceptable method o f scaling must 
result in a derived scale which is independent o f the original scale and o f the original 
group tested.”  (Loevinger, 1947, 46). Summing up the test calibration situation in 1947, 
Loevinger says, “ No system o f scaling has been proved adequate by the criteria proposed 
here, though these criteria correspond to the claims made by Thurstone’s system.”  
(Loevinger, 1947, 43). As for reliabilities based on correlations, “ Until an adquate system 
o f scaling is found, the correlation between tests o f  abilities, even between two tests o f 
the same ability, will be accidental to an unknown degree.”  (Loevinger, 1947, 46).

In 1950 Gulliksen concluded his Theory o f  Mental Tests with the observation that

Relatively little experimental or theoretical work has been done on the effect 
o f  group changes on item parameters. I f  we assume that a given item requires a 
certain ability, the proportion o f a group answering that item correctly will 
increase and decrease as the ability level o f  the group changes.. . .  As yet there* 
has been no systematic theoretical treatment o f measures o f item difficulty 
directed particularly toward determining the nature o f their variation with 
respect to changes in group ability. Neither has the experimental work on item 
analysis been directed toward determining the relative invariance o f item 
parameters with systematic changes in the ability level o f the group tested 
(Gulliksen, 1950, 392-393).

A t the 1953 ETS Invitational Conference on Testing Problems, Tucker suggested that, 
“ An ideal test may be conceived as one for which the information transmitted by each o f 
the possible scaled scores represents a location on some unitary continuum so that uni
form differences between scaled scores correspond to uniform differences between test 
performances for all score levels ”  (Tucker, 1953, 27). He also proposed the comparison 
o f  groups differing in ability as a strong method for evaluating test homogeneity (Tucker, 
1953, 25). But the other participants in the conference belittled his proposals as imprac
tical and idealistic.

In 1960 Angoff wrote in his encyclopedia article on measurement and scaling that

Most o f  the test scales now in use derive their systems o f units from data taken 
from actual test administrations, and thus are dependent on the performance 
o f the groups tested. When so constructed, the scale has meaning only so long 
as the group is well defined and has meaning, and bears a resemblance in some 
fashion to the groups or individuals who later take the test for the particular 
purposes o f selection, guidance, or group evaluation. However, i f  it is found
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that the sampling for the development o f  a test scale has not been adequate, 
or that the group on which the test has been scaled has outlived its usefulness, 
possibly because o f changes in the defined population or because o f changes 
in educational emphases, then the scale itself comes into question. This is a 
serious matter. A  test which is to have continued usefulness must have a scale 
which does not change with the times, which will permit acquaintance and 
familiarity with the system o f units, and which will permit an accumulation 
o f data fo r historical comparisons (Angoff, 1960, 815).

And yet the faulted methods referred to and criticized by Loevinger, Gulliksen and 
A n go ff are still widely used in test construction and measurement. This is in spite o f the 
fact that considerable evidence has accumulated in the past twenty-five years that much 
better methods are possible and practical.

These better methods have their roots in the 19th century psychophysical models o f 
Weber and Fechner. They are based on simple models for what it seems reasonable to 
suppose happens when a person responds to a test item. Tw o statistical distributions have 
been used to model the probabilistic aspect o f  this event. The normal distribution appears 
as a basis fo r mental measurement in Thurstone’s Law o f Comparative Judgement in the 
1920’s. The use o f the normal ogive as an item response model seems to have been 
initiated by Lawley and Finney in the 1940’s. Lord made the normal ogive the corner
stone o f  his approach to item analysis until about 1967, when under Bimbaum’s influ
ence, he switched to  a logistic response model (Lord, 1968).

The logistic distribution was used by biometricians to study growth and mortality 
rates in the 1920’s and Berkson has championed its practical advantages over the normal 
distribution ever since. These biometric applications were finally picked up, probably 
through the work o f Bradley and Terry in the 1950’s, and formulated into a logistic 
response model fo r item analysis by Bimbaum (1968) and Baker (1961). Baker developed 
computer programs for applying logit and probit item analysis and studied their perfor
mance with empirical and simulated data (Baker, 1959,1963).

In all o f  these approaches to item analysis, however, at least two parameters are 
sought for each item. Attempts are made to estimate not only an item difficulty, the 
response ogive’s horizontal intercept at probability one-half, but also an item discrimina
tion, the ogive’s slope at this intercept. Unfortunately this seemingly reasonable elabora
tion o f the problem introduces an insurmountable difficulty into applying these ideas 
in practice. There has been a running debate for at least fifteen years as to whether or not 
there is any useful way by which some kind o f estimates o f item parameters like item 
discrimination and item “ guessing”  can be obtained.

The inevitable resolution o f  this debate has been implicit ever since Fisher’s inven
tion o f  sufficient estimation in the 1920’s and Neymann and Scott’s work on the con
sistency o f  conditional estimators in the 1940’s. Rasch (1968), Andersen (1973, 1977) 
and Bamdorff-Nielsen (1978) each prove decisively that only item difficulty can actually 
be estimated consistently and sufficiently from the right/wrong item response data 
available for item analysis. These proofs make it clear that the dichotomous response data 
available for item analysis can only support the estimation o f item difficulty and that 
attempts to estimate any other individual item parameters are necessarily doomed.

The mathematics o f these proofs need not be mastered to become convinced o f their
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practical implications. Anyone who actually examines the inner workings o f the various 
computer programs advertised to estimate item discriminations and tries to apply them to 
actual data, will find that the resulting estimates are highly sample dependent. I f  attempts 
are made in these computer programs to iterate to an apparent convergence, this “ con
vergence”  can only be “ reached”  by interfering arbitrarily with the inevitable tendency 
o f at least one o f the item discrimination estimates to diverge to infinity. In most pro
grams this insurmountable problem is sidestepped either by not iterating at all or by 
preventing any particular discrimination estimate from exceeding some entirely arbitrary 
ceiling such as 2.0.

As far as we can tell, it was the Danish mathematician Georg Rasch who first under
stood the possibilities for truly objective measurement which reside in the simple logistic 
response model. Apparently it was also Rasch who first applied the logistic function to 
the actual analysis o f  mental test data for the practical purpose o f constructing tests. 
Rasch began his work on psychological measurement in 1945 when he standardized a 
group intelligence test for the Danish Department o f  Defense. It was in carrying out that 
item analysis that he first “ became aware o f the problem o f defining the difficulty o f an 
item independently o f  the population and the ability o f  an individual independently o f 
which items he has actually solved.”  (Rasch, 1960, viii). By 1952 he had laid down the 
basic foundations for a new psychometrics and worked out two probability models for 
the analysis o f  oral reading tests. In 1953 he reanalyzed the intelligence test data and 
developed the essentials o f  a logistic probability model fo r item analysis.

Rasch first published his concern about the problem o f  sample dependent estimates 
in his 1953 article on simultaneous factor analysis in several populations (Rasch, 1953). 
But his work on item analysis was unknown in this country until the spring o f 1960 
when he visited Chicago for three months, gave a paper at the Berkeley Symposium on 
Mathematical Statistics (Rasch, 1961), and published Probabilistic Models fo r  Some 
Intelligence and A tta inm ent Tests (Rasch, 1960).

In her 1965 review o f  person and population as psychometric concepts Loevinger 
wrote,

Rasch (1960) has devised a truly new approach to  psychometric problems . . .
He makes use o f  none o f  the classical psychometrics, but rather applies algebra 
anew to  a probabilistic model. The probability that a person w ill answer an 
item correctly is assumed to  be the product o f  an ability parameter pertaining 
only to the person and a d ifficu lty parameter pertaining only to  the item. 
Beyond specifying one person as the standard o f  ability or one item as the 
standard o f d ifficu lty, the ability assigned to  an individual is independent o f  
that o f  other members o f  the group and o f  the particular items with which he is 
tested; similarly fo r the item difficu lty . . .  Indeed, these tw o properties were 
once suggested as criteria fo r absolute scaling (Loevinger, 1947); at that time 
proposed schemes for absolute scaling had not been shown to satisfy the 
criteria, nor does Guttman scaling do so. Thus, Rasch must be credited with an 
outstanding contribution to one o f  the tw o central psychometric problems, 
the achievement o f  nonarbitrary measures. Rasch is concerned with a d ifferent 
and more rigorous kind o f  generalization than Cron bach, Rajaratnam, and 
Gleser. When his model fits, the results are independent o f  the sample o f 
persons and o f  the particular items within some broad limits. Within these 
limits, generality is, one might say, com plete (Loevinger, 1965,151).
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M y topic is a problem in measurement. It is an old problem in educational testing. 
A lfred  Binet worried about it 60 years ago. Louis Thurstone worried about it 40 years 
ago. The problem is still unsolved. T o  some it may seem a small point. But when you 
consider it carefully, I think you will find that this small point is a matter o f  life and 
death to the science o f  mental measurement. The truth is that the so-called measurements 
we now make in educational testing are no damn good!

Ever since I was old enough to  argue with my pals over who had the best IQ (I  say 
“ best”  because some thought 100 was perfect and 60 was passing), I have been puzzled 
by mental measurement. We were mixed up about the scale. IQ units were unlike any o f 
those measures o f  height, weight, and wealth with which we were learning to build a 
science o f  life. Even that noble achievement, 100 percent, was ambiguous. One hundred 
might signify the welcome news that we were smart. Or it might mean the test was easy. 
Sometimes we prayed fo r  easier tests to  make us smarter.

Later I learned one way a test score could more or less be used. I f  I were willing to 
accept as a whole the set o f  items making up a standardized test, I could get a relative 
measure o f  ability. I f  my performance put me at the eightieth percentile among college 
men, I would know where I stood. Or would I? The same score would also put me at the 
eighty-fifth percentile among college women, at the ninetieth percentile among high 
school seniors, and above the ninety-ninth percentile among high school juniors. M y 
ability depended not only on which items I took but on who I was and the company I 
kept!

The truth is that a scientific study o f  changes in ab ility—o f mental development—is 
far beyond our feeble capacities to make measurements. How can we possibly obtain 
quantitative answers to questions like: How much does reading comprehension increase in 
the first three years o f  school? What proportion o f  ability is native and what learned? 
What proportion o f  mature ability is achieved by each year o f  childhood?

I hope I am reminding you o f  some problems which afflict present practice in mental 
measurement. The scales on which ability is measured are uncomfortably slippery. They 
have no regular unit. Their meaning and estimated quality depend upon the specific set o f  
items actually standardized and the particular ability distribution o f  the children who 
happened to  appear in the standardizing sample.

I f  all o f  a specified set o f  items have been tried by a child you wish to  measure, then 
you can obtain his percentile position among whatever groups o f  children were used to 
standardize the test. But how do you interpret this measure beyond the confines o f  that set 
o f  items and those groups o f  children? Change the children and you have a new yardstick. 
Change the items and you have a new yardstick again. Each collection o f  items measures 
an ability o f  its own. Each measure depends for its meaning on its own family o f  test 
takers. How  can we make objective mental measurements and build a science o f  mental 
development when we work with rubber yardsticks?

The growth o f  science depends on the development o f  objective methods for trans
forming observation into measurement. The physical sciences are a good example. Their 
basis is the development o f  methods fo r measuring which are specific to the measurement 
intended and independent o f  variation in the other characteristics o f  the objects measured

0.3 AN INTRODUCTION TO THE MEASUREMENT PROBLEM
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or the measuring instruments used. When we want a physical measurement, we seldom 
worry about the individual identity o f the measuring instrument. We never concern 
ourselves with what objects other than the one we want to measure might sometime be, 
or once have been, measured with the same instrument, It is sufficient to know that the 
instrument is a member in good standing o f the class o f instruments appropriate for the 
job.

When a man says he is at the ninetieth percentile in math ability, we need to know 
in what group and on what test before we can make any sense o f his statement. But when 
he says he is five feet eleven inches tall, do we ask to see his yardstick? We know yard
sticks differ in color, temperature, compositions, weight—even size. Y et we assume they 
share a scale o f  length in a manner sufficiently independent o f these secondary charac
teristics to give a measurement o f five feet eleven inches objective meaning. We expect 
that another man o f the same height will measure about the same five feet eleven even on 
a different yardstick. I may be at a different ability percentile in every group I compare 
myself with. But I am the same 175 pounds in all o f  them.

Let us call measurement that possesses this property “ objective” . Two conditions 
are necessary to achieve it. First, the calibration o f measuring instruments must be 
independent o f those objects that happen to be used for calibration. Second, the measure
ment o f objects must be independent o f the instrument that happens to be used for 
measuring. In practice, these conditions can only be approximated. But their approxi
mation is what makes measurement objective.

Object-free instrument calibration and instrument-free object measurement are the 
conditions which make it possible to generalize measurement beyond the particular 
instrument used, to compare objects measured on similar but not identical instruments, 
and to combine or partition instruments to suit new measurement requirements.

The guiding star toward which models for mental measurement should aim is this 
kind o f objectivity. Otherwise how can we ever achieve a quantitative grasp o f mental 
abilities or ever construct a science o f mental development? The calibration o f test-item 
difficulty must be independent o f the particular persons used for the calibration. The 
measurement o f  person ability must be independent o f the particular test items used for 
measuring.

When we compare one item with another in order to calibrate a test, it should not 
matter whose responses to these items we use for the comparison. Our method for test 
calibration should give us the same results regardless o f whom we try the test on. This is 
the only way we will ever be able to construct tests which have uniform meaning regard
less o f whom we choose to measure with them.

When we expose persons to a selection o f test items in order to measure their ability, 
it should not matter which selection o f items we use or which items they complete. We 
should be able to compare persons, to arrive at statistically equivalent measurements o f 
ability, whatever selection o f  items happens to have been used—even when they have been 
measured with entirely different tests.

Exhortations about objectivity and sarcasm at the expense o f present practices are 
easy. But can anything be done about the problem? Is there a better way? In the old way 
o f doing things, we calibrate a test item by observing how many persons in a standard
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sample succeed on that item. The traditional item “ d ifficu lty”  is the proportion o f cor
rect responses in some standardizing sample. Item quality is judged from the correlation 
between these item responses and test scores. Person ability is a percentile standing in 
the same “ standard”  sample. Obviously this approach leans very heavily on assumptions 
concerning the appropriateness o f  the standardizing sample o f  persons.

A  quite different approach is possible, one in which no assumptions need be made 
about the ability distribution o f  the persons used. This new approach assumes instead a 
very simple model fo r what happens when any person encounters any item. The model 
says simply that the outcome o f  the encounter shall be taken to be entirely governed 
by the difference between the ability o f  the person and the difficulty o f  the item. Nothing 
more. The more able the person, the better their chances for success with any item. The 
easier the item, the more likely any person is to solve it. It is as simple as that.

But this simple model has surprising consequences. When measurement is governed 
by this model, it is possible to take into account whatever abilities the persons in the cali
bration sample happen to demonstrate and to free the estimation o f  item difficulty from 
the particulars o f  these abilities. The scores persons obtain on the test can be used to 
remove the influence o f  their abilities from  the estimation o f  item difficulty. The result 
is a sample-free item calibration.

The same thing can happen when we measure persons. The scores items receive in 
whatever sample happens to provide their calibrations can be used to remove the influ
ence o f  item difficu lty from the estimation o f  person ability. The result is a test-free 
person measurement.1

'Adap ted  from  Proceedings o f  the 1967 Invitational Conference on Testing Problems. Copyright ©  
1968 by Educational Testing Service. A ll rights reserved. Reprinted by permission.
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1 THE M EASUREM ENT MODEL

1.1 HOW TESTS ARE USED TO MEASURE

This book is about how to make and use mental tests. In order to do this success
fully we must have a method for turning observations o f test performance into measures 
o f  mental ability. The idea o f  a measure requires an idea o f  a variable on which the 
measure is located. I f  the variable is visualized as a line, then the measure can be pictured 
as a point on that line. This relationship between a measure and its variable is pictured in 
Figure 1.1.1.

1 F IG U R E 1.1.1 I

A MEASURE ON A VARIABLE

The Measure — .................. |

The Variable

When we test a person, our purpose is to estimate their location on the line implied 
by the test. Before we can do this we must construct a test that defines a line. We must 
also have a way to turn the person’s test performance into a location on that line. This 
book shows how to  use test items to define lines and how to use responses to these items 
to position persons on these lines.

In order for a test to define a variable o f  mental ability, the items out o f  which the 
test is made must share a line o f inquiry. This common line and its direction towards 
increasing ability can be pictured as an arrow with high ability to the right and low  ability 
to the left. The meaning o f  this arrow is given by the test items which define it. I f  we use 
the symbols 61, 62 . . .  6t . . . ,  to represent the difficulty levels o f  items, then each 5t 
marks the location o f  an item on the line. The 5 ’s are the calibrations o f  the items along 
the variable and these calibrated items are the operational definition o f what the variable 
measures. Hard items which challenge the most able persons define the high, or right, end 
o f the line. Easy items which even the least able persons can usually do successfully de
fine the low, or left, end o f  the line. Figure 1.1.2 shows a variable defined by four items 
spread across its length.

1
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FIGURE 1.1.2

DEFINING A VARIABLE

Person Measure

Easiest
Item

Hardest
Item

Item Calibrations

A variable begins as a general idea o f what we want to measure. This general idea is 
given substance by writing test items aimed at eliciting signs o f the intended variable in 
the behavior o f the persons. These test items become the operational definition o f the 
variable. The intuition o f the test builder and the careful' construction o f promising test 
items, however, are not enough. We must also gather evidence that a variable is in fact 
realized by the test items. We must give the items to suitable persons and analyze the 
resulting response patterns to see if  the items fit together in such a way that responses 
to them define a variable.

In order to locate a person on this variable we must test them with some o f the 
items which define the variable and then determine whether their responses add up to a 
position on the line. I f  we use the symbol 0 to represent the ability level o f the person, 
then j3 marks their location on the line.

The person measure 0 shown in Figure 1.1.2 locates this person above the three 
easiest items and below the hardest one. Were this person to take a test made up o f these 
four items, their most probable test score would be three and we would expect them 
to get the three easiest items correct and the fourth, hardest item, incorrect. This obser
vation is more important than it might seem because it is the basis o f all our methods 
for estimating person measures from test scores. When we want to know where a person 
is located on a variable, we obtain their responses to some o f the items which define the 
variable. The only reasonable place to estimate their location from these data is in the 
region where their responses shift from mostly correct on easier items to mostly incorrect 
on harder ones.

Before we can estimate a person’s measure from their score, however, we must 
examine their pattern o f responses. We must see if  their pattern is consistent with how we 
expect their items to elicit responses. When the items with which a person is tested have 
been calibrated along a variable from easy to hard, then we expect the person’s response 
pattern to be more or less consistent with the difficulty order o f these items along the
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variable. We expect the person to succeed on items that ought to be easy for them and to 
fail on items that ought to  be hard for them.

Figure 1.1.3 shows tw o response patterns to the same ten item test. The ten items 
are located along the variable at their levels o f  difficulty. Each pattern o f  responses is 
recorded above the line o f  the variable. The l ’s represent correct answers. The 0’s repre
sent incorrect answers. Both patterns produce a score o f  six.

In Pattern A  the six easiest items are correct and the four hardest ones incorrect. It 
seems inconceivable to locate this person anywhere except in the region above 56, the 
most difficu lt item they get correct, but below 57, the least o f the even more difficult 
items they get incorrect.
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Pattern B, however, is very difficult to reconcile with the implications o f a score 
o f six. This person gets the six hardest items correct and the four easiest ones incorrect! 
I f  we try to locate this person above 510, the hardest items they get correct, we have 
to explain how they got the four easiest items incorrect. Could anyone be that careless? 
If, on the other hand, we try to locate them below 5 ^, the easiest item they get incorrect, 
then how do we explain their getting the six hardest items incorrect? Every other location 
along the variable, such as between 6 6 and 6 7 for a score o f six, is equally unsatisfactory 
as a “ measure”  for the person who produced Pattern B. This pattern o f responses is not 
consistent with any location on the variable defined by these items. We are forced to 
conclude that something is wrong. Either the items used are miscalibrated or this person 
did not take them in the way we intended. In any case, no reasonable measure can be 
derived from Pattern B.

The Pattern B example is an important one because it shows us that even when we 
have constructed items that can define a valid variable we still have also to validate every 
person’s response pattern before proceeding to use their score as a basis for estimating 
their measure. When item calibrations have been validated by enough suitable persons, 
then most o f  the response patterns we encounter among suitable persons will approxi
mate Pattern A. However, the possibility o f  occurrences verging on Pattern B forces us 
to examine and validate routinely the response pattern o f  every person tested before we 
can presume to estimate a measure from their test score.

Four steps must be taken to use a test to measure a person. First, we must work 
out a clear idea o f the variable we intend to make measures on. Second, we must con
struct items which are believable realizations o f this idea and which can elicit signs o f 
it in the behavior o f  the persons we want to measure. Third, we must demonstrate that 
these items when taken by suitable persons can lead to results that are consistent with 
our intentions. Finally, before we can use any person’s score as a basis for their measure, 
we must determine whether or not their particular pattern o f responses is, in fact, con
sistent with our expectations.

1.2 HOW SCORES ARE USED

A  test score is intended to locate a person on the variable defined by the test items 
taken. Nearly everyone who uses test scores supposes that the person’s location on the 
variable is satisfactorily determined either by the score itself, or by some linear function 
o f the score such as a percent correct or a norm-based scale value. It is taken for granted 
that the score, or its scale equivalent, tells us something about the person tested that goes 
beyond the moment or materials o f  the testing. It is also taken for granted that scores are 
suitable for use in the arithmetic necessary to study growth and compare groups. But do 
scores actually have the properties necessary to make it reasonable to use them in these 
ways?

In order for a particular score to have meaning it must come from a response pattern 
which is consistent with items that define a variable. But even the demonstration o f item 
validity and response validity does not guarantee that the score will be useful. In order to 
generalize about the person beyond their score, in order to discover what their score 
implies, we must also take into account and adjust for the particulars o f the test items 
used. How, then, does a person’s test score depend on the characteristics o f the items in 
the test they take?
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f  F IG UR E 1.2.1 I
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Figure 1.2.1 shows what can happen when one person at a particular ability level 
takes five different tests all o f which measure on the same variable but which differ in 
the level and spread o f their item difficulties from easy to hard and narrow to wide. The 
difficulties o f the eight items in each test are marked on the line o f the variable. In order 
to see each test separately we have redrawn the line o f the variable five times, once for 
each test.

The ability o f the person on the measure is also marked on each line so that we can 
see how this person stands with respect to each test. While each test has a different posi
tion on the variable depending on the difficulties o f its items, this person’s position, o f 
course, is the same on each line. Figure 1.2.1 also shows the scores we would expect this 
person most often to get on these five tests.

The first, Very Easy Test, has items so easy for this person that we expect a test 
score o f eight. The second, Very Hard Test, has such hard items that we expect a score 
o f zero. The third, Narrow Hard Test, has seven o f its items above the person’s ability 
and one below. In this situation the score we would expect most often to see would be a 
one. The fourth, Narrow Easy Test, has seven o f its items below the person’s ability and 
so we expect a score o f seven. Finally the fifth, Wide Easy Test, has five items which 
should be easy for them. Even though this test is centered at the same position on the 
variable as the Narrow Easy Test just above it in Figure 1.2.1 and so has the same average 
difficulty level, nevertheless, because o f its greater width in item difficulty, we expect 
only a score o f five.

For one person we have five expected scores: zero, one, five, seven and eight! 
Although we know the person’s ability does not change, the five different scores, as they 
stand, suggest five different abilities. Test scores obviously depend as much on the item 
characteristics o f the test as on the ability o f the person taking the test.

I f  the meaning o f a test score depends on the characteristics o f  the test items, how
ever, then before we can determine a person’s ability from their test score we must 
“ adjust”  their score for the effects o f the particular test items from which that particu
lar score comes. This adjustment must be able to turn test-bound scores into measures 
o f person ability which are test-free.

Unfortunately, with test scores like zero, in which there is no instance o f success, 
and the eight o f our example, in which there is no instance o f failure, there is no satis
factory way to settle on a finite measure for the person. A ll we can do in those situations 
is to observe that the person who scored all incorrect or all correct is substantially below 
or above the operating level o f  the test they have taken. I f  we wish to estimate a finite 
measure for such a person, then we will have to find a test for them which is more appro
priate to their level o f  ability.

We might be tempted to interpret perfect scores as “ complete mastery.”  But unless 
the test in question actually contained the most difficult items that could ever be written 
for this variable there would always be the possibility o f other items which were even 
more difficult. These more difficult items might produce incorrect answers, even with 
our perfectly scoring person, revealing that mastery was not complete after all. When a 
test is extremely easy, o f course, everyone recognizes that even a perfect score is quite 
consistent with intermediate ability.
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The dependence o f test scores on item difficulty is a problem with which most 
test users are familiar. Almost everyone realizes that fifty  percent correct on an easy test 
does not mean as much as fifty  percent correct on a hard test. Some test users even 
realize that seventy-five percent correct on a narrow test does not imply as much ability 
as seventy-five percent correct on a wide test. But there is another problem in the use o f 
test scores which is often overlooked.

It is common practice to  compute differences in test scores to measure growth, to 
combine test scores by addition and subtraction in order to compare groups and to add 
and subtract squares and cross-products o f test scores in order to do regression analysis. 
But when these simple arithmetic operations are applied to test scores the results are 
always slightly distorted and can be substantially misleading. Although test scores usually 
estimate the order o f persons’ abilities rather well, they never estimate the spacing sat
isfactorily. Test scores are not linear in the measures they imply and for which they 
are used.

In the statistical use o f  test scores, floor and ceiling effects are occasionally recog
nized. But they are almost never adjusted for. These boundary effects cause any fixed 
differences o f  score points to vary in meaning over the score range o f  the test. The dis
tance on the variable a particular difference in score points implies is not the same from 
one end o f  the test to the other. A  difference o f five score points, for example, implies 
a larger change in ability at the ends o f a test than in the middle.

Figure 1.2.2 illustrates this problem with test scores. We show two persons with 
measures, 0A and pB, who are a fixed distance apart on the same variable. Both persons 
are administered five different tests all measuring on this variable. The persons’ locations 
and hence their measurable difference on the variable remain the same from test to test, 
but their most probable scores vary widely. This is because the five tests d iffer in their 
item difficu lty level, spread and spacing. L e t’s see how the resulting expected scores 
reflect the fixed difference between these tw o persons.

Test I is composed o f  eight items all o f  which fall well between Person A  and Person 
B. We expect Person A  to get none o f these items correct for a score o f  zero while we 
expect Person B to get all eight items correct for a score o f  eight. On this test their abili
ties will usually appear to be eight score points apart. That is as far apart in ability as it is 
possible to be on this test.

Test II  is composed o f eight items all o f  which are well below both persons. We ex
pect both persons to get scores o f  eight because this test is too easy for both o f them. 
Now  their expected score difference in test scores is zero and their abilities will usually 
appear to  be the same!

Test II I  is composed o f  eight very hard items. Now  we expect both persons to get 
scores o f zero because this test is too hard for them. Once again their expected score d if
ference is zero and their abilities will usually appear to be the same.

Test I was successful in separating Persons A  and B. Tests II and III failed because 
they were too  far o ff  target. Perhaps it is only necessary to center a test properly in order 
to observe the difference between two persons.
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•Test IV  is centered between Person A  and Person B but its items are so spread out 
that there is a wide gap in its middle into which Person A  and Person B both fall. The 
result is that both persons can be expected to achieve scores o f four because four items 
are too  easy and four items are too  hard for both o f them. Even for this test which is 
more or less centered on their positions, their expected score difference is zero and their 
abilities will still usually appear to be the same.

Test V , at last, is both wide and fairly well centered on Persons A  and B. It con
tains two items which fall between their positions and therefore separate them. We expect 
Person A  to get the four easiest items correct for a most probable score o f four. As for 
Person B, however, we expect them not only to get the same four items correct but also 
the next tw o harder ones because these two items are also below Person B’s ability level. 
Thus on Test V  the expected difference in scores between Person’s A  and B becomes 
two. On this test their abilities will usually appear to be somewhat, but not extremely, 
different.

What can we infer about the differences in ability between Persons A  and B from 
scores like these? Persons A  and B will tend to appear equally able on Tests II, III, and 
IV , somewhat different on. Test V  and as different as possible on Test I. I f  differences 
between the test scores o f  the same tw o persons can be made to  vary so widely merely 
by changing the difficulties o f  the items in the test, then how can we use differences in 
test scores to study ability differences on a variable?

The answer is, we can’t. N ot as they stand. In order to use test scores, which are 
not linear in the variable they imply, to analyze differences we must find a way to trans
form the test scores into measures which approximate linearity.

Test scores always contain a potentially misleading distortion. I f  we intend to use 
test results to study growth and to compare groups, then we must use a method for 
making measures from test scores which marks locations along the variable in an equal 
interval or linear way.

In this section we have illustrated two serious problems with test scores. The first 
illustration shows how test scores are test-bound and how we have to adjust them for the 
characteristics o f  their test items before we can use the scores as a basis for measurement. 
The second illustration shows how test scores do not mark locations on their variable in a 
linear way and how we need to transform test scores into measures that are linear before 
we can use them to study growth or to compare groups.

1.3 W H A T HAPPENS WHEN A PERSON TAKES AN ITEM

The discussions in Sections 1.1 and 1.2 establish our need for 1) valid items which 
can be demonstrated to define a variable, 2) valid response patterns which can be used to 
locate persons on this variable, 3) test-free measures that can be used to characterize per
sons in a general way and 4) linear measures that can be used to study growth and com
pare groups. Now  we must build a method that comes to grips with these requirements.

The responses o f individual persons to individual items are the raw data with which 
we begin. The method we develop must take these data and make from them item cali
brations and person measures with the properties we require. Figure 1.3.1 shows a very
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simple data matrix containing the responses o f eight persons to a five item test. The five 
items are named at the top o f the matrix. The eight persons are named at the left. The 
response o f each person to each item is indicated by “ 1”  for a correct response and “ 0”  
for an incorrect response. Notice that the responses in Figure 1.3.1 have been summed 
across the items and entered on the right side o f the matrix as person scores and down 
the persons and entered at the bottom o f the matrix as item scores.

J  FIGURE 1.3.1 I

A DATA MATRIX
OF OBSERVED RESPONSES

Person
Name 1 2

Item
Name

3 4 5
Person
Score

a 1 0 0 0 0 1

b 0 1 0 0 0 1

c 1 1 0 0 0 2

d 1 0 1 0 0 2

e 1 1 1 0 0 3

f 1 1 0 1 0 3

9 1 1 1 1 0 4

h 1 1 1 0 1 4

7 6 4

Item
Score

2 1 20

Figure 1.3.1 shows what the basic data look like. But before we can put these data 
to work we must answer a fundamental question. Where do we think these data come 
from? What are these item and person scores supposed to tell us about items and per
sons? How do we think these patterns o f l ’s and 0’s are produced? In order to figure out 
how to use these data we must set up a reasonable model for what we suppose happens 
when a person attempts to answer an item.

We would like a person v ’s ability /?„, that is their location on the variable, to govern 
how far along the variable we can expect them to produce correct responses to items. 
Indeed that is the only situation in which we can use item difficulties and a person’s 
responses to them as the basis for measuring the person.

O f course we can think o f other factors which might affect a person’s responses. I f  
items are multiple-choice, some guessing is bound to occur and persons differ in how 
much guessing they are willing to engage in. The possibilities o f  disturbing influences 
which interfere with the clear expression and hence the unambiguous observation o f 
ability Eire endless. But, if  it is really the person’s ability that we hope to measure, then
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it would be unreasonable not to do our best to arrange things so that it is the person’s 
ability which dominates their test behavior. Indeed, isn’t that what good test adminis
tration practices are for, namely, to control and minimize the intrusion o f interfering 
influences.

We would also like item t’s difficulty 5t, that is its location on the variable, to 
determine how far along the variable we can expect correct responses to that item to 
occur. As with persons, we can think up item characteristics, such as discrimination and 
vulnerability to guessing, which might m odify persons’ responses to  them. Some psycho
metricians attempt to estimate these additional item characteristics even though there 
are good reasons to expect that all such attempts must, in principle, fail. But, again, it 
hardly seems reasonable not to do our best to arrange things so that it is an item ’s d if
ficulty which dominates how persons o f various abilities respond to that item. In any 
case, the fact is that whenever we use unweighted scores as our test results we are assuming 
that, for all practical purposes, it is item difficulties, and person abilities, that dominate 
person responses.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ j  FIG UR E 1.3.2 |______________________

THE ESSENTIAL CONDITIONS CAUSING A RESPONSE

Person
Ability

Observed
Response

When the response is "correct", 
x = 1

When the response is "incorrect", 
x = 0
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These considerations lead us to set up a response model that is the simplest repre
sentation possible. Figure 1.3.2 diagrams person v with ability acting on item i with 
difficulty 81 to produce the response x „t. These are the essential elements we will take 
into account when we try to explain the data in Figure 1.3.1. Figure 1.3.2 proposes that 
the response xvl which occurs when person v takes item i can be thought o f as governed 
by the person’s ability 0V and the item’s difficulty 5( and nothing else.

Our next step is to decide how we want person ability 0V and item difficulty 51 to 
interact in order to produce x „t. What is a reasonable and useful way to set up a mathe
matical relation between 0V and 51? Since we require that 0V and 61 represent locations 
along one common variable which they share, it is their difference (0„ - 5t) which is the 
most convenient and natural formulation o f their relation.

Identifying the difference (0„ - 5t), however, does not finish our work because we 
must also decide how we want this difference to govern the value o f the response x vl. 
Even when a person is more able than an item is difficult, so that their 0V is greater 
than the item ’s 5(, it will occasionally happen that this person nevertheless fails to give 
a correct answer to that relatively easy item so that the resulting value o f xvi is “ 0” . It 
will also happen occasionally that a person o f moderate ability nevertheless succeeds on a 
very difficult item. Obviously it is going to be awkward to force a deterministic relation
ship onto the way -  5t) governs the value o f response x vi. A  better way to deal with 
this problem is to acknowledge that the way the difference (0V -  6t) influences the re
sponse x „ t can only be probabilistic and to set up our response model accordingly.

Figure 1.3.3 shows how it would be most reasonable to have the difference (0„ -  8t) 
affect the probability o f a correct response. When is larger than 5(, so that the ability 
level o f person v is greater than the difficulty level o f item i and their difference (/J„ -  5t) 
is greater than zero, then we want the probability o f  a correct answer to be greater than 
one half. When, on the other hand, the ability level o f person v is less than the difficulty 
level o f  item i, so that their difference (0„ — 61) is less than zero, then we want the proba
bility o f  a correct answer to be less than one half. Finally, when the levels o f person 
ability and item difficulty are the same so that their difference (0„ -  51) is zero, then 
the only probability that seems reasonable to assign to a correct (or to an incorrect) 
answer is exactly one half.

The curve in Figure 1.3.4 summarizes the implications o f Figure 1.3.3 for all reason
able relationships between probabilities o f correct responses and differences between 
person ability and item difficulty. This curve specifies the conditions our response model 
must fulfill. The differences (fiv  -  5t) could arise in two ways. They could arise from a 
variety o f person abilities reacting to a single item or they could arise from a variety o f 
item difficulties testing the ability o f one person. When the curve is drawn with ability 
0 as its variable so that it describes an item, it is called an item characteristic curve (ICC) 
because it shows the way the item elicits responses from persons o f every ability. When 
the curve is drawn with difficulty 5 as its variable so that it describes how a person 
responds to a variety o f  items, we can call it a person characteristic curve (PCC).
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[  F IG UR E 1.3.3 |

HOW DIFFERENCES BETWEEN 
PERSON A B IL ITY AND ITEM DIFFICULTY OUGHT TO 

AFFECT THE PROBABILITY OF A CORRECT RESPONSE

K

1. When

0 „> 5 t

f  (0 „ -5 t)> O
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2. When
P „ < 6 t

3. When
Pit =

I
(Pit ~  8 t )  < 0  5 t

and P|xj,t = lJ < ’/2

Pv

\
t
5t

(/3„- 6t) = 0

and P{xw = 1|= %

The curve in Figure 1.3.4 is a picture o f the response model we require in order to 
solve the problem o f  how the parameters, Pv and 51 which we want to estimate, depend 
on the data we can observe. T o  measure a person, we must estimate pv and to cali
brate an item we must estimate 6t. In order to estimate either o f these parameters from 
the observed responses o f persons to items we must construct a mathematical formula
tion which is true to the relationship drawn in Figure 1.3.4 and which relates pv, 5t and 
x vl in a useful way. This formulation must also be able to show us how to use data o f the 
kind given in Figure 1.3.1 to make estimates o f  person ability which are test-free and 
estimates o f item difficulty which are sample-free.
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1.4 TH E  RASCH M O DEL

In order to construct a workable mathematical form for the curve in Figure 1.3.4 
we begin by combining the parameters, for person ability and 6t for item difficulty 
through their difference (Pv -  6 ( ). We want this difference to govern the probability o f 
what is supposed to happen when person v uses their ability pv against the difficulty 51 
o f  item i. But the difference (0„ -  6t) can vary from minus infinity to plus infinity while 
the probability o f  a successful response must remain between zero and one. To  deal with 
this we apply the difference (0„ -  6t) as an exponent o f  the natural constant e = 2.71828 
. . .  and write the result as

e(Pv~ 8t) = exp

This exponential expression varies between zero and plus infinity and we can bring it 
into the interval between zero and one by forming the ratio

exp ( P „ -  5t)/[1 + exp (0 „- 5t>].

This formulation has a shape which follows the ogive in Figure 1.3.4 quite well. It can be 
used to  specify the probability o f  a successful response as

P lx ^  = I|j3„, 5 J =  exp (Pv -  6 t) / [  1 + exp (Pv -  5 t)] [1.4.11

which is the Rasch model.

Any mathematical form which describes an ogive o f  the shape in Figure 1.3.4 could 
provide a solution to the linearity problem by transforming scores which are restricted 
between 0 and 100 percent into “ measures”  which run from minus infinity to plus 
infinity.

Any mathematical form which relates the probability o f  x „ t to the difference be
tween pv and 51 and which has estimable parameters could allow us to study item and 
response validity. A ll we have to do is to specify a workable model for how (j3„ -  5t)
governs the probability o f  x „ t, use this model to estimate pv and 51 from some data and
then examine the way these data fit with predictions calculated from the model.

Any ogive and any formulation, however, will not do. In fact, only the formulation 
o f  Equation 1.4.1, the Rasch model, allows us to  estimate pv and 5t independently o f  one 
another in such a way that the estimates pv are freed from the effects o f  the 6 ( and the 
estimates dt are freed from the effects o f  the Py’s.

The logistic function in Equation 1.4.1 provides a simple, useful response model 
that makes both linearity o f  scale and generality o f  measure possible. Although biometri
cians have used the logistic function since 1920, it was the Danish mathematician Georg 
Rasch (1960) who first appreciated its psychometric significance. Rasch calls the special 
characteristic o f the simple logistic function which makes generality in measurement 
possible “ specific objectivity.”  He and others have shown that there is no alternative 
mathematical formulation for the ogive in Figure 1.3.4 that allows estimation o f the 
person measures Pv and the item calibrations 6t independently o f  one another (Rasch, 
1961, 1967; Andersen, 1973, 1977; Bamdorff-Nielsen, 1978). When the estimators for 
Pv and 51 are derived by maximizing a conditional liklihood they are unbiased, consistent,
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efficient, and sufficient (Andersen, 1970, 1971, 1972a, 1973, 1977; Haberman, 1977). 
Simple approximations for these conditional maximum likelihood estimators which 
are accurate enough for almost all practical purposes are described in Wright and Pan- 
chapakesan (1969), Wright and Douglas (1975a, 1975b, 1977a, 1977b) and Wright 
and Mead (1976). These procedures have been useful in a wide variety o f applications 
(Connolly, Nachtman and Pritchett, 1971; Woodcock, 1974; Willmott and Fowles, 
1974; Rentz and Bashaw, 1975, 1977; Andrich, 1975; Mead, 1975; Wright and Mead, 
1977; Cornish and Wines, 1977; Draba, 1978; Elliott, Murray and Pearson, 1977.

_______________________ | TABLE 1.4.1 | _______________________

PERSON ABILITY AND ITEM DIFFICULTY IN LOGITS 
AND THE RASCH PROBABILITY OF A RIGHT ANSWER

Person Item Right Answer Information
Ability Difficulty Difference Odds Probability in a Response

Pv *» exp(/3j, -  5 t) nvi

5 0 5 148. .99 .01
4 0 4 54.6 .98 .02
3 0 3 20.1 .95 .05
2 0 2 7.39 .88 .11
1 0 1 2.72 .73 .20

*

0 0 0 1.00 .50 .25

0 1 -  1 0.368 .27 .20
0 2 -  2 0.135 .12 .11
0 3 -  3 0.050 .05 .05
0 4 -  4 0.018 .02 .02
0 5 -  5 0.007 .01 .01

vVL = exp $ v -  5t) / [  1 + exp (0„ -  5 t)] 

K i= nv i^  ~ nw)

We can see in Equation 1.4.1 that when person v is smarter than item i is difficult, 
then j3„ is more than 61, their difference is positive and the probability o f  success on item 
i is greater than one half. The more the person’s ability surpasses the item’s difficulty, 
the greater this positive difference and the nearer the probability o f success comes to 
one. But when the item is too hard for the person, then is less than 6t, their difference 
is negative and the person’s probability o f  success is less than one half. The more the 
item overwhelms the person, the greater this negative difference becomes and the nearer 
the probability o f success comes to zero.
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The mathematical units for pv and 6t defined by this model are called “ logits.”  A 
person’s ability in logits is their natural log odds for succeeding on items o f the kind 
chosen to define the “ zero”  point on the scale. And an item ’s difficulty in logits is its 
natural log odds for eliciting failure from persons with “ zero”  ability.

Table 1.4.1 gives examples o f  various person abilities and item difficulties in logits, 
their differences (/3„ -  51) and the success probabilities which result. The first six rows 
illustrate various person abilities and their success probabilities when provoked by items 
o f zero difficulty. The last six rows give examples o f various item difficulties and the 
probabilities o f  success on them by persons with zero ability.

The origin and scale o f  the logits used in Table 1.4.1 are arbitrary. We can add any 
constant to all abilities and all difficulties without changing the difference (0„ -  6( ). This 
means that we can place the zero point on the scale so that negative difficulties and abili
ties do not occur. We can also introduce any scaling factor we find convenient including 
one large enough to eliminate any need for decimal fractions. Chapter 8 investigates these 
possibilities in detail.

The last column o f  Table 1.4.1 gives the relative information I„ t = -nVL( 1 -  -nvl)avail 
able in a response observed at each (j3„ -  5t). When item difficulty 5t is within a logit o f 
person ability j3„, the information about either 6 L or in one observation is greater than 
.20. But when item difficulty is more than two logits o f f  target, the information is less 
and .11 and for \PV -  6t| >  3 less than .05. The implications for efficient calibration 
sampling and best test design are that responses in the \fiv -  51| <  1 region are worth 
more than twice as much for calibrating items or measuring persons as those outside o f 
\Pv -  51| >  2 and more than four times as much as those outside o f |j3„ — 51| >  3.

1.5 USING TH E RASCH M O DEL FOR C A L IB R A TIN G  A N D  M EASURING

We have established the need for an explicit approach to measurement and shown 
how measurement problems can be addressed with a model for what happens when a 
person takes an item. Now  we are ready to work through the mathematics o f this model 
in order to  find out how we can use the model to calibrate items and measure persons. 
The model specifies the probability o f person v with ability j3„ giving response x „ t to item 
i with difficu lty 51 as

When we insert each o f these values o f Xj,t into Equation 1.5.1 we find that it breaks 
down into the complementary expressions

P{xw  |j3„,5t}=  exp[x„t(/3„-  8t) ] / [1  + e x p ( 0 „ -  5 t)] [1.5.1]

The response x vl takes only tw o values,

x „( = 0 when the response is incorrect and 
x „ t = 1 when the response is correct.

P{xl,l = 1  |0„ ,5 t}=  exp ((J„- 6 t)/[1  + exp ( 0 „ - 5 t)] [1.5.2]

for a correct response and

P{x„t = 0 1 5 ( } =  1/[1 + exp (fl„ -  5 t)] [1.5.3]
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for an incorrect response. These two expressions add up to one because together they 
cover everything that can happen to x „t.

When a set o f L  items is administered to a sample o f N persons, the result is an N by 
L collection o f responses ( (x „ t)) for which v = 1, N and i = 1, L  and the double parentheses 
(( )) remind us that a whole N by L table o f x „ ( ’s is implied. These data can be displayed 
in a matrix like the one shown in Figure 1.5.1. The marginal sums o f the rows and col- 
ums o f this data matrix are the person scores

L
v =  1,N

and the item scores

t =  1 .L

J  FIGURE 1.5.1

DATA MATRIX OF OBSERVED RESPONSES

Items Person
Scores

L

Persons

N

Item
Scores

N

2  xvl = s,



THE MEASUREMENT MODEL 19

What happens when we analyze these data as though they were governed by the 
model o f  Equation 1.5.1? According to that model the only systematic influences on the 
production o f  the x ^ ’s are the N  person abilities (Pv ) and the L item difficulties (6 (). As 
a result, apart from these parameters, the x ^ ’s are modeled to  be quite independent o f 
one another. This means that the probability o f  the whole data matrix ( (x „ t)), given the 
model and its parameters (0 „) and (51), can be expressed as the product o f  the probabili
ties o f  each separate x vl given by Equation 1.5.1 continued over all v = 1, N and all 
i = 1, L.

This continued product is

i ± ;|exp [x„( ( /3 „ -5,)] )
P{ <( *„) >l ( 0„us, l ) . n | . [1.5.4]

N L
When we move the continued product operators n and n in the numerator o f

v i
Equation 1.5.4 into the exponential expression

exp [xw 6t>],

they become the summation operators

N L
2 and 2  so that

N L  f"N  L  "1

n n exp [xvl(Pv ~ 6t)] = exp 2  2 x „ t (0 „ -5 t) . 
v i  L v i J

Then, since

N L

and

N L  L

2  2 Xm St = 2  st 5t,
V  I  I

Equation 1.5.4 becomes

expOh*
n n [1 + (exp(^ -  )J

[1.5.5]

v i

Equation 1.5.5 is important because it shows that in order to estimate the para
meters (/3j,) and (5 t), we need only the marginal sums o f the data matrix, (r„) and (^ ). 
This is because that is the only way the data ( (x „ t) )  appear in Equation 1.5.5. Thus the 
person scores (r,,) and item scores (st) contain all the modelled information about person 
measures and item calibrations.

Finally, the numerator o f  Equation 1.5.5 can be factored into two parts so that the 
model probability o f  the data matrix becomes
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N L

[exp ( 2 r„ 0„f) [exp ( -  2 st 5t)]
P {((xw ))|(/3„),(6t)} = ------------------------------------ '----------  [1.5.6]

I I I I  [1 + exp (0 „ -  8,)]
i

Equation 1.5.6 is important because it shows that the person and item parameters 
can be estimated independently o f  one another. The separation o f

( 2 r„ pj 
v

and

L

( 2 st 5t)
i

in Equation 1.5.6 makes it possible to condition either set o f  parameters out o f Equation
1.5.6 when estimating the other set. This means, in the language o f statistics, that the 
scores (r „ ) and (st) are sufficient for estimating the person measures and the item cali
brations.

Because o f this we can use the person scores (r „ ) to remove the person parameters 
(P„) from Equation 1.5.6 when calibrating items. This frees the item calibrations from the 
modelled characteristics o f the persons and in this way produces sample-free item cali
brations. As for measuring persons, we could use the item scores (s( ) to remove the item 
parameters (8 t) from Equation 1.5.6. When we come to person measurement, however, 
we will find it more convenient to work directly from the estimated item calibrations
(dt).

There are several ways that Equation 1.5.6 can be used to estimate values for pv and 
5t. The ideal way is to use the sufficient statistics for persons (r,,) to condition person 
parameters (0„) out o f  the equation. This leaves a conditional liklihood involving only the 
item parameters (6t) and they can be estimated from this conditional liklihood (Fischer 
and Scheiblechner, 1970; Andersen, 1972a, 1972b; Wright and Douglas, 1975b, 1977b; 
Allerup and Sorber, 1977; Gustafsson, 1977).

But this ideal method is impractical and unnecessary. Computing times are excessive. 
Round-off errors limit application to tests o f fifty  items at most. And, in any case, results 
are numerically equivalent to those o f quicker and more robust methods. A  convenient 
and practical alternative is to use Equation 1.5.6 as it stands. To learn more about this 
unconditional estimation o f item parameters see Wright and Panchapakesan (1969), 
Wright and Douglas (1975b, 1977a, 1977b) and Chapter 3, Section 3.4. o f  this book.

Even this unconditional method, however, is often unnecessarily detailed and costly 
for practical work. I f  the persons we use to calibrate items are not too unsymmetrically 
distributed in ability and not too far o ff  target so that the impact o f  their ability distribu
tion can be more or less summarized by its mean and variance, then we can use a very 
simple and workable method for estimating item difficulties. This method, called PROX, 
was first suggested by Leslie Cohen in 1973 (see Wright and Douglas, 1977a; Wright, 
1977).
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1.6 A  SIMPLE USEFUL ESTIM A TIO N  PROCEDURE

Three methods o f  parameter estimation will be used in this book. The general un
conditional method called UCON requires a computer and a computer program such as 
B IC AL (Wright and Mead, 1976). UCON is discussed and illustrated in Chapter 3. A  
second method called UFORM , which can be done by hand with the help o f the simple 
tables given in Appendix C, is discussed and applied in Chapter 7. The third method, 
PROX, is completely manageable by hand. In addition the simplicity o f  PROX helps us 
to see how the Rasch model works to solve measurement problems. The derivations o f 
the UFORM  and PRO X  equations are given in Wright and Douglas (1975a, 1975b).

PR O X  assumes that person abilities (0„) are more or less normally distributed with 
mean M and standard deviation a and that item difficulties (5 t) are also more or less 
normally distributed with average d ifficu lty H and difficulty standard deviation co.

I f

~ N  (M , a )

and

5t ~  N (H , co2),

then for any person v with person score r„ on a test o f  L  items it follows that

bj, = H + Xfin [rj,/(L  -  r„)] [1.6.1]

and fo r any item i with item scores st in a sample o f  N  persons it follows that

dt = M + Y8n [ (N -  st)/st] [1.6.2]

The coefficients X  and Y  are expansion factors which respond in the c l  ,e o f X  to 
the d ifficu lty dispersion o f  items and in the case o f  Y  to the ability dispersion o f  persons. 
In particular

X = ( 1 + w 2/2 .8 9 )1/2 [1.6.3]

and

Y =  (1 + o2/2.89)Vx [1.6.4]

The value 2.89 = 1.72 comes from the scaling factor 1.7 which brings the logistic 
ogive into approximate coincidence with the normal ogive. This is because the logistic 
ogive for values o f  1.7z is never more than one percent different from the normal ogive 
fo r values o f  z.

The estimates b„ and dt have standard errors

SE(b„) = X [L /r „ (L -  r„)] Vx [1-6.5]

SE(dt) = Y  [N/st( N -  st) ] 1/a [ 1.6 .6 ]



This estimation method can be applied directly to observed item scores (st) by calcu
lating the sample score logit o f item t as

xt = 8n [(N -  st)/s( ] [1.6.71

and the item score logit o f  person v as

y„ = Cn [ r „ / (L -  r„)] [1.6.8]

The expansion factors X  and Y  are then estimated by the expressions

X = [{1 + U /2.89)/(1 -  U V /8 .35 )]14 , [1.6.9]

for the person logit expansion factor and

Y = [(1 + V /2 .89)/(1  -  U V /8 .3 5 ) ] * , [1.6.10] 

for the item logit expansion factor.

In these expressions 2.89 = 1.72 and 8.35 = 2.892 = 1.74 and

U = ( 2  x,2 -  Lx .2 ) / ( L  -  1), [1.6.11]
I 1

the item logit variance and

N
V  = ( 2 y „ 2 -  Ny.2 ) / ( N -  1), [1.6.12]

0

the person logit variance.

To complete this estimation, we set the test center at zero so that H = 0. Then 

dt = M + Yxt = Y (xt -  x.) [1.6.13]

for each item difficulty, and

b„ = H + Xy„ = Xy„ [1.6.14]

for each person ability.

Standard errors are

SE(dt) = Y [N /s t{N -  st) ] 14 “  2 .5 /N 54 [1.6.15]

and

SE(bv) = X t L / r ^ L -  rv) ] 'A =  2 .5 /L 54 [1.6.16]

Finally the estimated person sample mean and standard deviation become

M «  -  Yx . [1.6.17]

1.7{Y2 -  1)^ [1.6.18]

22 BEST TEST DESIGN
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Once we have estimated b„ and dt we can use them to obtain the difference be
tween what the model predicts and the data we have actually observed. These residuals 
from  the model are calculated by estimating the model expectations at each x „ t from by 
and dt and subtracting this expectation from the x „ t which was observed. The model 
expectation for x vi is

^ ( XW } = 17 VI

with model variance

V {*vi } = vvi ^  ~ 71 vJ

where

v vl = exp (Pv -  5 t)/[1  + exp  (0y- 6t)] .

A  standardized residual would be

(X w - i r w ) / t i r w ( 1 -  w ^ ) ]54 . [1.6.191

I f  the data fit  the model this standardized residual ought to  be distributed more or less 
normally with mean zero and variance one.

I f  we estimate v Vl from pvl where

pvi = exp (bv -  d ()/[1  + exp (by -  dt)] [1.6.20]

then we can use the error distributions 

Zyt ~  N (0,1) and

7 2
z lH Xi

as guidelines fo r evaluating the extent to  which any particular set o f  data can be managed 
by our measurement model.'

We can calculate the sum o f their squared residuals zvl2 for each person. According
to the model this sum o f  squared normal deviates should approximate a chi-square distri
bution with about (L  -  1) degrees o f freedom. This gives us a chi-square statistic

[1.6.211

with degrees o f  freedom

fy = (L -  1)(N -  1)/N  [1.6.22]

and a mean square statistic

vy = Cl / fy ~  F y  °o [1.6.23]
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which approximates an F-distribution when the person’s responses fit the model.

The sum o f squared residuals for each item can be used in the same way to evaluate 
item fit. For items

f  Zw = Ct2 ~ X f2i [1.6.24]

with

ft = (N — 1)(L — 1 )/L  [1.6.25]

and

vi = c i2 / f i ~ Fft <°°. [1.6.26]

Finally, since x „ ( can only equal one or zero, we can use the definition o f p „t given
Vl and z „t2in Equation 1.6.20 to calculate z„, and z 2 directly as

zw = (2xw -  1) exp [(2xw -  1)(dt -  b„)/2] [1.6.27]

and

z^t = e xp [(2x„ ,- 1)(dt -b^,)] [1.6.28]

This relation can also be worked backwards. I f  we already have a z „t2 and wish to
calculate the probability o f the observed response x „t to which it refers in order to decide
whether or not that response is too improbable to believe, then we can use

P{xw I b„,dt }=  1/(1 + z„t2). [1.6.29]

In contrast with the pul o f Equation 1.6.20 which is the estimated probability o f a 
correct answer, the probability o f Equation 1.6.29 applies to x „ t whatever value it takes, 
whether x „ t = 1 for a correct answer or x „ t = 0 for an incorrect one.

1.7 HOW TR A D IT IO N A L  TEST STATISTICS APPEAR IN RASCH MEASUREMENT

Sections 1.1, 1.2 and 1.3 discuss the purpose o f tests, the use o f test scores and the 
problems o f generality and linearity in making measures. Sections 1.4, 1.5 and 1.6 des
cribe a simple and practical solution to these measurement problems. Because the math
ematics are new it might seem that using the Rasch model will take us far away from the 
traditional item statistics with which we are familiar. This is not so.

Applying the Rasch model in test development gives us new versions o f the old 
statistics. These new statistics contain all o f  the old familiar information, but in a form 
which solves most o f the measurement problems that have always beset traditional 
test construction. To show this we will examine the three most common traditional item 
and person statistics and see how closely they relate to their corresponding Rasch mea
surement statistics.
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The Item P-Value

The most familiar traditional item statistic is the item “ p-value.”  This is the propor
tion o f persons in a specified sample who get that item correct. The PROX estimation 
equation (1.6.2) gives us a convenient way to formulate the relationship between the 
traditional item p-value and Rasch item difficulty. I f  the p-value for item i is expressed as

Pt = s(/N

in which st is the number o f  persons in the sample o f N persons who answered item i 
correctly, then the PRO X  estimated Rasch item difficulty is

dt = M + (1 + o 2/2 .8 9 )’/’ Cn [(1 - Pl)/pt] [1.7.1]

Equation 1.7.1 shows that the Rasch item difficulty dt is in a one-to-one relation 
with the item p-value represented by p(. It also shows that this one-to-one relation is curvi
linear and involves the ability mean M and variance a 2 o f the calibrating sample.

What the Rasch model does is to use the logit function

Cn [(1 - P t )/P tl

to transform the item p-value which is not linear in the implied variable into a new value 
which is. This new logit value expresses the item difficulty on an equal interval scale 
and makes the subsequent correction o f the item ’s p-value for the ability mean M and 
variance a 2 o f  the calibrating sample easy to accomplish.

This correction is made by scaling the logit to  remove the effects o f  sample variance 
a 2 and translating this scaled logit to remove the effects o f  sample mean M. The resulting 
Rasch item difficulties are not only on an equal interval scale but they are also freed 
o f the observed ability mean and variance o f the calibrating sample. Just as the item 
p-value P( has a binomial standard error o f

SE(pt) = [pt(1 -  p [)/N ] 'A [1.7.2]

so the PRO X  item difficu lty dt has its own closely related standard error o f

SE(d() = (1 + ct2/2.89)'/2 [1 /N p t(1 -  pt) ] *  . [1.7.3]

But there are tw o important differences between Equations 1.7.2 and 1.7.3. Unlike the 
p-value standard error in Equation 1.7.2, the Rasch standard error in Equation 1.7.3 is 
corrected for the ability variance a2 o f  the calibrating sample. The second difference 
between these tw o formulations is more subtle, but even more important.

The traditional item p-value standard errors in Equation 1.7.2 are maximum in the 
middle at p-values near one-half and zero at the extremes at p-values o f zero or one. This 
makes it appear that we know the most about an item, that is have the smallest standard
error for its p-value when, in fact, we actually know the least. This is because the item
p-value is focused on the calibrating sample as well as on the item. As the sample goes 
o f f  target fo r the item, the item p-value nears zero or one and its standard error nears 
zero. This assures us that the item p-value for this particular sample is extreme but it
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tells us nothing else about the item. Thus even though our knowledge o f the item’s p- 
value is increasing our information concerning the actual difficulty o f the item is de
creasing. When item p-values are zero or one, the calibrating sample which was intended 
to tell us how that item works is shown to be too able or too unable to interact with the 
item. We know exactly in which direction to look for the item difficulty, but we have 
no information as to where in that direction it might be.

In contrast, the Rasch standard error for dt varies in a more reasonable manner. The 
expression pt (1 -  pt) which goes to zero as pt goes to zero or one, appears in the denomi
nator o f Equation 1.7.3 instead o f in the numerator, as it does in Equation 1.7.2. There
fore, the Rasch standard error is smallest at pt = .5, where the sample is centered on the 
item and thus gives us the most information about how that item functions. A t the 
extremes, however, where we have the least information, the Rasch standard error goes to 
infinity reminding us that we have learned almost nothing about that item from this 
sample.

The Item Point-Biserial

The second most widely used traditional item statistic is the point biserial correlation 
between the sampled persons’ dichotomous responses to an item and their total test 
scores. The item point-biserial has two characteristics which interfere with its usefulness 
as an index o f how well an item fits with the set o f  items in which it appears. First, there 
is no clear basis for determining what magnitude item point-biserial establishes item 
acceptability. Rejecting the statistical hypothesis that an item point-biserial is zero does 
not produce a satisfactory statistical criterion for validating an item. The second inter
fering characteristic is that the magnitude o f the point-biserial is substantially influenced 
by the score distribution o f the calibrating sample. A  given item ’s point-biserial is'largest 
when the persons in the sample are spread out in scores and centered on that item. Con
versely as the variance in person scores decreases or the sample level moves away from the 
item level, so that the p-value approaches zero or one, the point-biserial decreases to zero 
regardless o f the quality o f  the item.

The Rasch statistic that corresponds in meaning to the item point-biserial is the 
item’s mean square residual given in Equation 1.6.26. This mean square residual is not 
only sensitive to items which fail to correlate with the test score, but also to item point- 
biserials which are unexpectedly large. This happens, for example, when an additional 
and unmodelled variable produces a local interaction between a unique feature o f the 
item in question and a corresponding idiosyncrasy among some members o f the cali
brating sample.

In contrast with the point-biserial, the Rasch item mean square residual has a useful 
statistical reference distribution. The reference value for testing the statistical hypothesis 
that an item belongs in the test is a mean square o f one with a standard error o f (2/f)54 
for f  degrees o f freedom. Thus the extent to which an observed mean square exceeds the 
expected value o f one can be tested for its statistical significance at whatever significance 
level is considered useful.

The Rasch item mean square is also very nearly indifferent to the ability distribution 
o f the calibrating sample. This provides a test o f item fit which is focused on just those 
sample and item characteristics which remain when the modelled values for item d iffi
culty and person abilities are removed.
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The Person Test Score

The most familiar traditional person statistic is test score, the number o f  correct 
answers the person earns on the test taken. Once again we can use the PRO X estimation 
procedure to show the connection between the traditional test score and Rasch person
ability. Using the PRO X  estimation equation (1.6.1) we have

b„ = H + (1 + w 2/2 .8 9 )*  in  [r„ /(L  -  r„)] [1.7.4]

with a standard error o f

SE(bj,) = (1 + w 2/2 .8 9 )*  [L/r„{1 -  r „ ) ]14 [1.7.5]

in which

rv = the test score o f  person v,
L  = the number o f items in the test,
H = the average difficu lty level o f  the test and

the variance in difficulties o f  the test items.

As with the item p-values we see the logit function transforming the person scores 
which are not linear in the variable they imply into an approximately linear metric. We 
also see this logit being scaled fo r test width, which is represented in Equation 1.7.4 by 
the item difficu lty variance oj 2, and then being shifted to adjust for test difficulty level 
H so that the resulting estimated person ability is freed from the local effects o f  the test 
and becomes a test-free measure.

The standard error o f  this measure is minimum at scores near 50 percent correct, 
where we have the most information about the person, and goes to infinity at scores o f 
zero and 100 percent, where we have the least information about the person.

While traditional test practices almost always emphasize the analysis o f  item validity, 
hardly any attention is ever given to  the validity o f  the pattern o f responses leading to a 
person score. As far as we know no one calculates a person point-biserial coefficient in 
order to determine the relationship between the responses that person gives to each item
and the supposedly relevant item p-values. This would be a reasonable way to apply the
traditional point-biserial correlation coefficient to  the supervision o f person score validity.

The Rasch approach to person score validity is outlined in Equations 1.6.19 through 
1.6.23 and discussed and illustrated at length in Chapters 4 and 7.

There are other connections that can be made between traditional test statistics 
and Rasch statistics. We could review here the various ways that traditional test reliability 
and validity, norm referencing, criterion referencing, form equating and mastery testing 
are handled in Rasch measurement. But each o f these topics deserves a thorough dis
cussion and that, in fact, is the purpose o f  the chapters which follow. Our next step now 
is to see how the PRO X estimation procedure works to solve a simple problem in test 
construction.
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2.1 IN TRO DUCTIO N

This chapter describes and illustrates in detail an extremely simple procedure for the 
Rasch calibration o f test items. The procedure, called PROX, approximates the results 
obtained by more elaborate and hence more accurate procedures extremely well. It 
achieves the basic aims o f Rasch item analysis, namely linearization o f  the latent scale and 
adjustment for the local effects o f  sample ability distribution. The assumption which 
makes PROX simple is that the effects on item calibration o f sample ability distribution 
can be adequately accounted for by just a mean and standard deviation. This assumption 
makes PROX so simple that it can easily be applied by hand.

In practice, it will often be convenient to let item calibration be done by computer. 
However, PROX provides an opportunity to illustrate Rasch item analysis in minute 
detail, thereby exposing to complete comprehension the process involved, and, where 
computing facilities are remote or it is urgent to check computer output for plausibility, 
then PROX provides a method for calibrating items which requires nothing more than the 
observed distributions o f item score and person score, a hand calculator (or adding 
machine) and paper and pencil.

The data for illustrating PROX come from the administration o f the 18-item. Knox 
Cube Test, a subtest o f  the Arthur Point Scale (Arthur, 1947) to 35 students in Grades 2 
to 7. Our analysis o f these data shows how Rasch item analysis can be useful for 
managing not only the construction o f national item banks but also the smallest 
imaginable measurement problem, i.e., one short test given to one roomful o f  examinees.

Using student correct/incorrect responses to each item o f the test, we work out in 
detail each step o f the procedure for PROX item analysis. Then, Chapter 3 reviews 
comparable computer analyses o f  the same data by both the PROX procedure and the 
more accurate UCON procedure used in most computer programs for Rasch item analysis. 
These detailed steps offer a systematic illustration o f the item analysis procedure with 
which to compare and by which to understand computer outputs. They also demonstrate 
the ease o f hand computations using PROX (PRO X is derived and described at length in 
Wright and Douglas, 1975b, 1976, 1977a; Cohen, 1976, and Wright, 1977). Finally, they 
illustrate the empirical development o f a latent trait or variable. Each step moves from 
the observed data toward the inferred variable, from the confines o f the observed 
test-bound scores to the reaches o f the inferred test-free measurements.

2.2. THE KNO X CUBE TEST

While the Arthur Point Scale covers a variety o f mental tasks, the Knox Cube Test 
implies a single latent trait. Success on this subtest requires the application o f visual 
attention and short-term memory to a simple sequencing task. It appears to be free from 
school-related tasks and hence to be an indicator o f nonverbal intellectual capacity.

28
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The Knox Cube Test uses five one-inch cubes. Four o f the cubes are fixed two 
inches apart on a board, and the fifth cube is used to tap a series on the other four. The 
four attached cubes will be referred to, from left to right, as “ 1,”  “ 2,”  “ 3 ”  and “ 4 ”  to 
avoid confusion when specifying any particular series to be tapped. In the original version 
o f  the test used for this example, there are 18 such series going from the two-step sequences 
(1-4) and (2-3) to the seven-step sequence (4-1-3-4-2-1-4). Usually, a subject is administered 
this test twice with another subtest from the battery intervening. However, we need use 
only the first administration for our analysis.

The 18 series are given in Figure 2.2.1. These are the 18 “ items”  o f the test. Note 
that Items 1 and 2 require a two-step sequence; Items 3 through 6, a three-step sequence; 
Items 7 through 10, a four-step sequence; Items 11 through 13, a five-step sequence, 
Items 14 through 17, a six-step sequence; and Item 18, a seven-step sequence.

FIG UR E 2.2.1

ITEM NAME AND TAPPING ORDER FOR THE 
KNOX CUBE TEST

ITEM NAME

1 1
2 2
3 1
4 1
5 2
6 3
7 1
8 1
9 1

10 2
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 4

TAPPING ORDER

4
3
2 4
3 4
1 4
4 1
4 3 2
4 2 3
3 2 4
4 3 1
3 1 2 4
3 2 4 3
4 3 2 4
4 2 3 4 1
3 2 4 1 3
4 2 3 1 4
4 3 1 2 4
1 3 4 2 1

2.3 THE D A TA  FOR ITEM  A N A LYSIS

The responses o f  35 students to a single administration o f the 18 item Knox Cube 
Test are given in Table 2.3.1. These responses are arranged in a person-by-item data 
matrix. A  correct response by a student to an item is recorded as a 1, and an incorrect 
response as a 0. The items have been listed across the top in the order o f  administration.
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Student scores, the number o f correct responses achieved by each student, are given 
at the end o f each row in the last column on the right. Item scores, the total number o f 
correct responses to each item, are given at the bottom o f each column.

Inspection o f Table 2.3.1 shows that the order o f administration is very close to the 
order o f difficulty. Items 1, 2 and 3 are answered correctly by all students. A  second, 
slightly greater, level o f difficulty is observed in Items 4 through 9. Then Items 10 and 11 
show a sharp increase in difficulty. Items 12 through 17 are answered correctly by only a 
few students, and no student succeeds on Item 18. Only 12 students score successfully at 
least once on Items 12 through 17, and only five o f  these students do one or more o f the 
six-tap items successfully.

2.4 CALIBRATING ITEMS AND MEASURING PERSONS

The general plan for accomplishing item analysis begins with editing the data in 
Table 2.3.1 to remove persons and items for which no definite estimates o f ability or 
difficulty can be made, i.e., those with all correct or all incorrect responses. This means 
that Person 35 and Items 1, 2, 3 and 18 must be set aside, leaving 34 persons and 14 
items for analysis. Then the remaining information about persons and items is 
summarized into a distribution o f person scores and a distribution o f item scores.

Next these score distributions are rendered as proportions o f their maximum possible 
value and their frequency o f occurrence is recorded. The proportions are then converted 
to log odds, or logits, by taking for items the natural log o f the proportion incorrect 
divided by the proportion correct and for persons the natural log o f the proportion o f 
successes divided by the proportion o f failures. This converts proportions, which are 
bounded by 0 and 1, to a new scale which extends from -  °° to + 00 and is lineqr in the 
underlying variable.

For “ item difficu lty”  this variable increases with the proportion o f incorrect 
responses. For “ person ability”  it increases with the proportion o f correct responses. The 
mean and variance for each distribution o f logits are then computed, and the mean item 
logit is lused to center the item logits at zero. This choice o f origin for the new scale is 
inevitably arbitrary but must be made. Basing it on items rather than on persons and 
placing it in the center o f the current items is natural and convenient.

The item logit and person logit variances are used to calculate two expansion factors, 
one for items and one for persons. These factors are used to calculate the final 
sample-free item difficulties and test-free person abilities. They are needed because the 
apparent relative difficulties o f the items depend upon how dispersed in ability the 
sample o f persons is. The more dispersed the persons, the more similar in difficulty will 
items appear. This is also true for apparent ability. The more dispersed the test in item 
difficulty, the more similar in ability will persons appear. These effects o f  sample spread 
and test width must be removed from the estimates o f item difficulty and person ability, 
if these estimates are to be made sample-free and test-free.

Finally, the standard errors o f these estimates are calculated. The standard errors 
are needed to assess the precision o f the estimates. They depend on the same expansion 
factors plus the extent to which the item difficulty is centered among the person abilities 
and the person ability is centered among the item difficulties. The more that items or 
persons are centered on target, the more precise are their estimates and hence the smaller 
their standard errors.
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Step 1. Organizing the Data Matrix

The data matrix in Table 2.3.1 has been rearranged in Table 2.4.1 so that person 
scores are ordered from low to high with their respective proportions given in the 
right-most column, and item scores are ordered from high to low with their proportions 
given in the bottom row.

Step 2. Editing the Data Matrix

The data matrix o f  person-by-item responses in Table 2.4.1 has also been edited by 
removing all items that were answered correctly by everyone or no one, and by removing 
all persons who had perfect scores or who had not answered any items correctly.

The boundary lines drawn in Table 2.3.1 show the items and persons removed by 
the editing process. Items 1, 2 and 3 were removed because they were answered correctly 
by everyone. Removing these three items then brought about the removal o f Person 35 
because this person had only these three items correct and hence none correct after these 
items were removed. Item 18 was removed because no person answered this item 
correctly.

Editing a data matrix may require several such cycles because removing items can 
necessitate removing persons and vice versa. For example, had there been a person who 
had succeeded on all but Item 18, then removal o f  Item 18 would have left this person 
with a perfect score on the remaining items and so that person would also have had to be 
removed.

Why were some items and some persons removed? When no one in a sample o f 
persons gets an item correct, that shows that the item is too difficult for this sample o f 
persons. However, no further information is available as to just how much too difficult it 
actually is. When everyone gets an item correct, that shows that the item is too easy for 
these persons, but again, no further information is available as to exactly how much too 
easy the item actually is. To make a definite estimate for a very easy item we must find at 
least one measurable person who gets it incorrect, and for a very hard item, at least one 
measurable person who gets it correct. That is, we must “ bracket”  the item between 
persons at least one o f whom is more and at least one o f  whom is less able than the item 
is difficult. O f course, only one person below a very easy item or above a very hard one 
does not give a very precise estimate o f that item ’s difficulty.

Thus, we have insufficient data in our example to evaluate the extreme Items 1, 2, 3 
and 18. We know that Items 1, 2 and 3 appear very easy and that Item 18 appears to be 
very hard for these persons, but we do not have enough information to specify definite 
estimates o f the difficulties o f  these four items.

As for extreme persons, do persons with a zero score know nothing? Are scores o f 
100% indicative o f persons who “ know it all”  or have they only answered easy questions? 
To make a definite estimate for a person, we must bracket that person between items that 
are both easier and harder than the person is able.

The boundary scores o f zero and 100%, whether for items or for persons, represent 
incomplete information. They tell us in which direction to look for an estimate o f the 
person’s ability or the item’s difficulty, but they do not tell us how far to go in that 
direction. For sufficient information to make a definite estimate o f where the person or



ITEM CALIBRATION BY HAND 33



34 BEST TEST DESIGN

the item is on the latent variable, we must find some items too easy and some items too 
hard for these persons, and some persons too smart and others too dumb for these items, 
so that each item and person is bracketed by observations. Then we can make an estimate 
o f where they are on the variable.

Step 3. Obtaining Initial Item Calibrations

From the edited data matrix in Table 2.4.1, we build a grouped distribution o f the 
10 different item scores and their logits incorrect, and compute the mean and variance o f 
the distribution o f these item logits over the test o f  14 items. This is done in Table 2.4.2.

EXPLANATION OF TABLE 2.4.2

Column 1 o f Table 2.4.2 gives the item names 
collected into each item score group.

Column 2 gives the item score which characterizes 
each item score group. Since there are 
10 different item scores in this example, 
G = 10 and the item score group index i 
goes from 1 to 10.

Column 3 gives the frequency o f items at each 
score. The sum o f these frequencies 
over the G = 10 item score group comes 
to the L = 14 items being calibrated.

Column 4 converts the item scores into propor
tions correct among the sample o f N = 
34 persons.

Column 5 is the conversion o f proportion correct 
p: into the proportion incorrect 1 - Pj

Column 6 is the conversion o f this proportion into 
logits incorrect. Each item score group 
logit is the natural log o f its proportion 
incorrect divided by its proportion cor
rect.

This conversion is facilitated by the 
values o f  the logits £n[p/(l-p)] given in 
Table 2.4.3.

Column 7 is the product o f item frequency and 
logit incorrect.

NOTATION AND FORMULAE

i = 1, G

f :

L = Z f :

Pi = Sj/N

1 -  Pi = (N -  Sj)/N

Xj = in  [ (1  - P j) /P j]

f i x j

Column 8 is the product o f item frequency and 
logit incorrect squared.
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The mean and variance for the item 
logits in Column 6 are then computed 
from the values in Columns 7 and 8 and 
given beneath these columns.

Column 9 gives the values o f Column 6 centered 
by subtracting their mean. These are the 
initial item calibrations ready to be 
corrected for the effect o f sample 
spread.

38

G

x. = Z  f : X j/L  
i

G
U = ( I f j X j 2 - Lx.2 ) /  (L-1) 

i

BEST TEST DESIGN

In this example, the mean and variance have been computed from the values in 
Columns 7 and 8. Hand calibration can be facilitated even further by a short-cut 
expression for a standard deviation proposed by Mason and Odeh (1968). To do this, 
sum the item logits in Column 9 (or Column 6) for the top and bottom sixth o f the items 
ordered by difficulty, and take the square o f twice the difference o f these sums divided 
by one less than the number o f items.

For the data in Table 2.4.2:

a. One-sixth o f ihe items is 14/6 = 7/3, or 2.33 items at each end.

b. The item logits incorrect for the top three items in Column 9 are 3.29, 
which times 2.33 is 3.29 x 2.33 = 7.67.

c. The item logit incorrect for the bottom item is -2.94 and for the next two 
items is -2.50. So, taking the lowest item, -2.94, plus 7/3 - 3/3 = 4/3 o f the 
next two items, gives (-2.94) + (-2.50 x 1.33) = -  6.27.

d. The difference between 7.67 and -6.27 is 13.94.

e. Twice this amount divided by the number o f items minus one and squared 
becomes the variance estimate [2(13.94)/13]2 = 4.6.

This short-cut value o f 4.6 is somewhat smaller than 5.7 but the number o f items is 
small and the distribution is flatter than the normal distribution assumed by the 
short-cut.

Completion o f the steps in Table 2.4.2 provides initial values for item difficulties in 
preparation for the adjustment which will compensate for the effect o f sample spread.

Step 4. Obtaining Initial Person Measures

In Table 2.4.4, we take identical steps with a grouped distribution o f  person scores 
in order to obtain the distribution o f person score logits and hence initial values for the 
abilities that go with each possible score on the test.

EXPLANATION OF TABLE 2.4.4 NOTATION AND FORMULAE

Column 1 o f Table 2.4.4 gives each possible r = 1, L -1
person score from 1 to 13.
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EXPLANATION OF TABLE 2.4.4

Column 2 gives the frequency o f  persons observed 
at each score. The total number o f 
persons N = 34 equals the sum o f  these 
frequencies from r = l t o r  = 13.

Column 3 is the proportion o f  each score on a test 
o f  L  = 14 items.

Column 4 is the logit correct for that proportion 
using Table 2.4.3.

Column 5 is the product o f  person frequency and 
logit correct.

Column 6 is the product o f  the person frequency 
and logit correct squared.

Column 7 repeats the values o f  Column 4 because, 
as far as this test is concerned, the score 
logits are already centered by the cen
tering o f the item logits. These are the 
initial person measures prior to correc
tion for test width.

NOTATION AND FORMULAE 

n r
L - 1 

N = 2  n r 
r

p r = r/L

V r = *n  [p r/(1  - p r ) ] 

nr y r

The mean and variance for the distribution o f  score logits over persons are given at 
the base o f  Table 2.4.4, as is the short-cut estimate o f  the variance.

Note that because we are interested not only in the scores observed in this sample 
but also in the measurements implied by any possible score which might be observed on 
this test o f  14 items, unobserved scores o f 1, 12 and 13 have been added to Table 2.4.4, 
together with the initial measures for these scores. The measurement model specifies what 
measures are equivalent to  these scores even when no persons in the sample actually earn 
them.

T o  summarize the procedure thus far (now  letting each item define its own item 
score group for notational simplicity, so that the item index i now runs from 1 to 14 
items instead o f  from 1 to 10 item score groups):

For a test o f  L* items given to N* persons, we delete all items no one gets 
correct and no one gets incorrect, and all persons with none correct and none 
incorrect until no such items or persons remain.

Letting Sj be the number o f  persons who got item i correct for i = 1 through L, 
and n_ be the number o f  persons who got r items correct, for r = 1 through L -l, 
we find the mean and variance over items o f the log odds incorrect answers 
(or item logits incorrect) in the sample to each o f  the L items and the mean and 
variance over persons o f  the log odds correct answers (or score logits correct) 
on the test by each o f the N persons.
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Thus we obtain, for each item i, its logit 
incorrect answers among the sample o f N 
persons,

and the mean and variance over L items o f 
these item logits.

And we obtain for each score r its logit 
correct answers on the test o f L  items,

and the mean and variance over N persons o f 
their score logits.

Xj = 8n[(N -  Sjl/Sj]

x. = 2  x j / L  
i

L
U = 2  (x j - x.) 2/ (  L - 1) 

i

y r =£n [r / (  L - r )  ]

L -1
y. = Z  nr y r /N  

r

L -1
v =  2  nr ( v r - y ) 2/ (n -d

r

Now we are ready to adjust the initial calibrations and measures in Tables 2.4.2 and
2.4.4 for the local effects o f  the person ability distribution o f the sample and the item 
difficulty distribution o f  the test.

Step 5. Calculating the Expansion Factors

We compute expansion factors for the initial estimates o f item calibrations and 
person measures in order to correct the item calibrations for sample spread and the 
person measures for test width. From Tables 2.4.2 and 2.4.4 we have U = 5.72 and V = 
0.46 (or the short-cut values U' = 4.6 and V ' = 0.5).

a. The person ability expansion factor 
due to test width is

X =
1 +U /2 .89
1 -  U V /8 .35  

1 +5.72/2.89
1- (5.72) (0.461/8.35 

lA
= 2.09

lA

2.98

0.68

or short-cut value X ' =

lA
1 + U 7 2 .9  

1 - U 'V '/8 .4

j  +4.6 /2 .9  

1 -(4 .6) (0 .5 )/8 .4  

lA

= 1.9

lA

2.59

0.73

1 For explanation see Chapter One, Section 1.6.
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b. The item difficulty expansion factor 
due to sample spread is

Y =

BEST TEST DESIGN  

*/2

1 +V/2.89

_1- U V /8 .35  

1+0 .46 /2 .89
*/2

1 —(5.72) (0 .46)/8 .35  

>/2
1.16

0.68
= 1.31

or short-cut value Y ’ =
1 + V 7 2 .9  

1 - U 'V 7 8 .4

1 + 0 .5 /2 .9

*/2

%

1- (4.6) (0.5) /8.4_ 

Vi
1.17
0.73

= 1.3

Step 6. Correcting Item Calibrations for the Effect of Sample Spread

In Table 2.4.5 we obtain the final corrected item calibrations and their standard 
errors from the sample spread expansion factor Y.

EXPLANATION OF TABLE 2.4.5

Column 1 gives the item name.

Column 2 repeats the initial item calibrations from 
Column 9 o f Table. 2.4.2. (Recall that 
when items are grouped by item score, 
then i runs from 1 to G the number o f 
item score groups instead o f from 1 to 
L indexing the individual items.)

Column 3 is the item difficulty expansion factor 
Y  = 1.31 due to sample spread.

Column 4 is the corrected item calibrations ob
tained by multiplying each initial value 
in Column 2 by the expansion factor of 
1.31.

NOTATION AND FORMULAE

d° = x j - x. i = 1 ,G

Y

d i = Y d i 

= Y ( x r x.)

Column 5 reminds us o f the number o f persons 
who got the items in each item score 
group correct.
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TAB LE 2.4.6

FINAL ESTIMATES OF PERSON MEASURES
FOR ALL POSSIBLE SCORES ON THE 14 ITEM TEST

1 2 3 4 5

POSSIBLE
TEST IN IT IA L  

SCORE MEASURE

TEST W IDTH  
EXPANSION 

FACTOR
CORRECTED

MEASURE

MEASURE
STANDARD

ERROR

r
*>r X b = Xb° r r SE (b r )

1 -  2.59 2.09 -  5.41 2.17

2 -  1.82 2.09 -  3.80 1.60

3 -  1.32 2.09 -  2.76 1.36

4 - 0 .9 0 2.09 -  1.88 1.24

5 - 0 .5 8 2.09 -  1.21 1.17

6 - 0 .2 8 2.09 - 0 .5 9 1.13

7 0.00 2.09 0.00 1.12

8 0.28 2.09 0.59 1.13

9 0.58 2.09 1.21 1.17

10 0 .90 2.09 1.88 1.24

11 1.32 2.09 2.76 1.36

12 1.82 2.09 3.80 1.60

13 2.59 2.09 5.41 2.17

L =14

%
SE (br) = X [L /r (L -r )  ]
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EXPLANATION OF TABLE 2.4.4

BEST TEST DESIGN 

NOTATION AND FORMULAE

Column 6 is the standard error o f the corrected 
item calibrations.

SE (dj) = V [ N / Si(N -  Sj> ] 54

Step 7. Correcting Person Measures for the Effect of Test Width

In Table 2.4.6 we obtain the final corrected person measures and their standard 
errors from the test width expansion factor X.

EXPLANATION OF TABLE 2.4.6

Column 1 gives all possible scores because we want 
to have measures available for every 
possible test score from 1 to L — 1, 
whatever scores were actually observed.

Column 2 repeats the initial person measures from 
Column 7 o f  Table 2.4.4.

Column 3 is the person ability expansion factor 
X = 2.09 due to test width.

Column 4 is the corrected person measures ob
tained by multiplying each initial value 
in Column 2 by the expansion factor o f 
2.09.

Column 5 is the standard error o f  the corrected 
person measures.

NOTATION AND FORMULAE

r = 1, L -1

b? = y r

br = X b°=  X yr

SE (br) = X [L /r (L -  r) ]

2.5 DISCUSSION

The PROX item analysis procedure has been carefully described not only because it 
accomplishes item calibration and hence person measurement but also because it 
embodies in a logical and straightforward manner the simplest possible analysis o f the 
interaction between items and persons. The decisive idea on which this analysis is based is 
that the probability o f success is dominated by the person’s ability and the item ’s d iffi
culty. A  more able person is supposed always to have a greater chance o f success on any 
item than is a less able person. Any particular person is supposed always to have a better 
chance o f  success on an easy item than on a difficulty one. To the extent this is the case 
the probability o f  any person’s success on any item can be specified as the consequence 
o f the difference between the person’s position on a single variable and the item’s 
position on that same variable. That is the Rasch model for item analysis and test 
construction and, indeed, the fundamental model implicit in the item analysis o f  all those 
who work with unweighted scores (Andersen, 1977).
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A ll the information observed about a person’s position on the variable, e.g., his 
ability, is assumed to be expressed in his responses to the set o f items he takes as 
summarized in the unweighted count o f  the number o f  items he gets correct. For item 
difficu lty, the information observed is assumed to be completely contained in the 
unweighted count o f  persons in the sample who responded correctly to that item.

O f course, this modeling o f  the interaction between person and item is an 
idealization and can only approximate whatever actually happens. A ll ideas, however, are, 
in the end, only approximations o f, or abstractions from, experience. Their value can 
only be judged in terms o f  their usefulness, that is, their demonstrable relevance to the 
situation under study, and their simplicity. This chapter has illustrated the simplicity and 
potential convenience o f  Rasch item analysis. Its utility is testified to by hundreds o f 
applications. Our next task is to show how the same data just analyzed by hand come out 
when the PRO X  procedure and its more elaborate and accurate parent procedure, UCON, 
are applied to them by computer.



3 ITEM CALIBRATION BY COMPUTER

3.1 INTRO DUCTION

In this chapter we display and describe computer output for Rasch item calibration 
using the estimation procedures PROX and UCON (Wright and Panchapakesan, 1969; 
Wright and Douglas, 1975b, 1977a, 1977b). The Knox Cube Test data analyzed by hand 
in Chapter 2 are used for illustration. The estimation procedures are performed by the 
computer program BICAL (Wright and Mead, 1976). The accuracy and utility o f  the 
hand calibration described in Chapter 2 are evaluated by comparing the “ hand”  estimates 
with those produced by a computer analysis o f the same data. Knowing the steps by 
which these procedures can be applied by hand should facilitate understanding and using 
the computer output.

We will move through the computer output step by step in order to bring out its 
organization and use. B ICAL produces the output given in Tables 3.2.1 to 3.2.9. A  
comparison o f the item and person statistics from PROX by hand with those from PROX 
by computer is given in Tables 3.3.1 through 3.3.5.

3.2 BICAL OUTPUT FOR A PROX ANALYSIS OF THE KNOX CUBE TEST D A TA

The first page o f the output, in Table 3.2.1, recaps the control specifications neces
sary to apply the 1976 version o f B ICAL to this calibration job (for details consult the 
manual that goes with your BICAL program). A t the top we begin with the job  title, the 
various control parameters, the record (or card) columns read, the test scoring key and a 
copy o f the first person record read. Finally, the output reports that 18 items and 34 per
sons went into this analysis.

__________________| TABLE 3.2.1 |___________________

--------------------------  PROGRAM CONTROL SPECIFICATIONS -----------------------

KNO X CUBE TEST  

CONTROL PARAMETERS  

Ml NSC MAXSC LREC KCAB SCORE

1 17 21 1 0

COLUMNS SELECTED  

1 2  3 4
1 * ......................

111111111111111111
KEY

111111111111111111
FIRST SUBJECT

001111111100000000000

NUMBER OF ITEMS 18 
NUMBER OF SUBJT 34

NITEM  NGROP

18 10

46
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The control parameters for this job  were:

1. Number o f  items (N ITE M ): 18

2. Smallest subgroup size (N G R O P): 10

3. Minimum score (M INSC): 1

4. Maximum score (M AXSC ): 17

5. Record length to  be read (LR E C ): 21

6. Calibration procedure (K C AB ):

7. Scoring option (SCORE):

There were originally 18 items in the KCT.

Subgroups o f  at least 10 persons are to be 
formed fo r analyzing item fit.

The minimum score to  be used is 1.

The maximum score to be used is 17.

The data comes from the first 21 positions 
o f each person record. [The column select 
card (listed in Table 3.2.1 under “ COLUMN 
SELECTED” ) specifies the 18 columns 
that contain these test responses.]

The calibration procedure to be used is 
PROX.
[The selection code is: 1 = PROX, 2 = 
UCON]

The data are already scored.
[The full control code is: 0 = data to be 
scored dichotomously according to  key 
supplied; 1 = data are successive integers; 
2 = score data “ correct” , i f  response value 
equal to  or less than key supplied, else 
“ incorrect” ; 3 = score data “ correct” , i f  
response value equal to  or greater than key 
supplied, else “ incorrect” .]

Table 3.2.2 gives each item ’s response frequencies for each response value. This table 
can accommodate up to five response values as specified by the user. An “ unknown”  
value column records the count o f  all other values encountered. The final column is for 
the key. The key marks the value specified as correct when the data is still to be scored. 
As Table 3.2.2 shows the KCT data was entered in scored form. The appropriate key, 
therefore, is the vector o f  ‘ l ’s shown in Tables 3.2.1 and 3.2.2. Each item is identified 
on the le ft by its sequence number in the original order o f  test items as read into BICAL. 
A  four-character item name can also be used to identify test items. For the KCT we have 
named the items by the number o f  taps required.

Table 3.2.2 enables us to  examine the observed responses for obvious disturbances 
to  our test plan and will often suggest possible explanations for gross misfits. The distri
bution o f  responses over multiple-choice distractors, for example, can reveal the undue 
influence o f  particular distractors. The effects o f  insufficient time show up in the piling 
up o f  responses in the U N K N  column toward the end o f  the test. The effects o f  wide
spread inexperience in test taking show up in the pile-up o f U N KN  responses in the first 
one or tw o items o f  the test.

We see again in Table 3.2.2 what we already learned from Table 2.3.1, namely that 
the first three items are answered correctly by all 34 persons, that Item 18 was not an
swered correctly by anyone and that there is a rapid shift from largely correct responses 
to  largely incorrect responses between Items 9 and 11. Since ITEM NAM E gives the 
number o f  taps in the series, we see that this shift occurs when the task moves from a 
series o f  four taps up to  five taps.
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TABLE 3.2.2

RESPONSE FREQUENCIES FOR EACH RESPONSE ALTERNATIVE

SEQ
NUM

1

ITEM
NAME

2

A LTE R N A TIVE  RESPONSE FREQUENCIES  

0 1

0 34 0 0 0

UNKN

0

KEY

1
2 2 0 34 0 0 0 0 1
3 3 0 34 0 0 0 0 1
4 3 2 32 0 0 0 0 1
5 3 3 31 0 0 0 0 1
6 3 4 30 0 0 0 0 1
7 4 3 31 0 0 0 0 1
8 4 7 27 0 0 0 0 1
9 4 4 30 0 0 0 0 1

10 4 10 24 0 0 0 0 1
11 5 22 12 0 0 0 0 1
12 5 28 6 0 0 0 0 1
13 5 27 7 0 0 0 0 1
14 6 31 3 0 0 0 0 1
15 6 33 1 0 0 0 0 1
16 6 33 1 0 0 0 0 1
17 6 33 1 0 0 0 0 1
18 6 34 0 0 0 0 0 1

Table 3.2.3 reports the editing process. It summarizes the work o f the editing rou
tine which successively removes person records with zero or perfect scores and items 
correctly answered by all persons or not answered correctly by any persons, until all such 
persons or items are detected and set aside. The editing process determines the final 
matrix o f  item-by-person responses that is analyzed.

Table 3.2.3 shows that initially there were no persons with perfect or zero scores, 
and that 18 items entered the run, with no person scoring below 1 or above 17, leaving 
34 persons for calibration (The 35th person appearing in Table 2.3.1 had already been 
removed from the data deck by hand.). Items 1, 2 and 3 are then removed by the editing 
process because they were answered correctly by all subjects and Item 18 is removed 
because no one answered it correctly. A fter this editing the calibration sample still con
sists o f  34 subjects, but now only the 14 items which can be calibrated remain, with the 
same minimum score o f  1 and a new maximum score o f 13.

Table 3.2.4 shows the distribution o f persons over the KCT scores. The histogram is 
scaled according to the scale factor printed below the graph. The distribution o f  person 
scores gives a picture o f how this sample responded to these items. It shows how well the 
items were targeted on the persons and how relevant the persons selected were for this 
calibration. For the best calibration, persons should be more or less evenly distributed 
over a range o f scores, around and above the center o f the test. In our sample we see a 
symmetrical distribution around a modal score o f 7.
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TABLE 3.2.3

THE EDITING PROCESS

K N O X CUBE TEST

NUMBER OF ZER O  SCORES 0
NUMBER OF PERFECT SCORES 0

NUMBER OF ITEM S SELECTED 18
NUMBER OF ITEM S NAM ED  18

SUBJECTS BELOW 1 0
SUBJECTS ABO VE 17 0
SUBJECTS R E M A IN IN G  34

T O T A L  SUBJECTS 34

REJECTED ITEM S

ITEM ITEM ANSW ERED
NUMBER NAM E C O R RECTLY

1 2 34 H IG H  SCORE
2 2 34 H IG H  SCORE
3 3 34 H IG H  SCORE

18 6 0 LOW SCORE

SUBJECTS D ELETED = 0
SUBJECTS R EM A IN IN G = 34

ITEM S D ELETED = 4
ITEM S R EM A IN IN G = 14

M IN IM U M  SCORE = 1
M A X IM U M  SCORE = 13

TAB LE 3.2.4

SAMPLE PERSON ABILITY DISTRIBUTION

SCORE D IS TR IB U T IO N  OF A B IL IT Y

CO U NT PROPORTION 2

1 0 0.0
2 1 0.03 X

3 2 0.06 XX

4 2 0.06 XX

5 2 0.06 XX

6 3 0.09 XXX

7 12 0.36 xxxxxxxxxxxx
8 5 0.15 xxxxx
9 4 0.12 xxxx

10 1 0.03 X

11 2 0.06 XX

12 0 0.0
13 0 0.0
14 0 0.0

EACH X = 2.94 PERCENT
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Table 3.2.5 shows the distribution o f item easiness. The scale is given below the 
graph. Items 4 through 9 are seen to be fairly easy, with Item 8 the most difficult among 
them. Item 10 is slightly more difficult. Item 11 is much more difficult, followed by 
Items 12 and 13, more difficult still. Finally, items 15, 16 and 17 are so difficult that 
only one person answered these items correctly.________

  TABLE 3.2.5___ _________________ _

TEST ITEM EASINESS DISTRIBUTION

ITEM D ISTRIBUTION OF EASINESS

COUNT PROPORTION 2 4 6 8 10

4 32 0.94 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
5 31 0.91 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
6 30 0.88 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
7 31 0.91 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
8 27 0.79 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
9 30 0.88 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

10 24 0.71 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
11 12 0.35 xxxxxxxxxxxxxxxxxx
12 6 0.18 xxxxxxxxx
13 7 0.21 xxxxxxxxxx
14 3 0.09 xxxx
15 1 0.03 X
16 1 0.03 X
17 1 0.03 X

EACH X = 2.00 PERCENT

Table 3.2.6 gives the estimation information. A t the top are the PROX difficulty 
and ability expansion factors. Notice that these values are identical to those we obtained 
by hand in Chapter 2. Within the table, the first four columns give the item sequence 
number, item name, item difficulty and standard error.

___________________  TABLE 3.2.6

CALIBRATION BY PROX

D IFF IC U LTY  EXPANSION FACTOR 1.31

A B IL IT Y  EXPANSION FACTOR 2.10

SEQUENCE ITEM ITEM STANDARD
NUMBER NAME D IF F IC U L TY ERROR

4 3 -3 .8 6 5 0.833
5 3 -3 .2 9 4 0.691
6 3 -2 .8 7 6 0.608
7 4 -3 .294 0.691
8 4 -2 .0 0 7 0.485
9 4 -2 .8 7 6 0.608

10 4 -1 .3 8 8 0.430
11 5 0.547 0.410
12 5 1.767 0.514
13 5 1.518 0.485
14 6 2.805 0.691
15 6 4.321 1.160
16 6 4.321 1.160
17 6 4.321 1.160
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Table 3.2.7 gives the logit ability measure and its standard error for each score on 
the K C T and the number o f persons in the sample obtaining each score. For each raw 
score we can see the sample frequency at that score and the ability and standard error 
implied by that score. The sample ability mean and standard deviation are given at the 
bottom  o f  the table.

TAB LE 3.2.7

MEASUREMENT BY PROX

COMPLETE SCORE EQ U IVA LE N C E  TAB LE

RAW PERSON STA N DA RD
SCORE COUNT A B IL IT Y ERROR

13 0 5.40 1.51
12 0 3.77 1.11
11 2 2.73 0.94
10 1 1.93 0.86
9 4 1.24 0.81
8 5 0.61 0.78
7 12 0.00 0.78
6 3 -0 .6 1 0.78
5 2 -1 .2 4 0.81
4 2 -1 .9 3 0.86
3 2 -2 .7 3 0.94
2 1 -3 .7 7 1.11
1 0 -5 .4 0 1.51

M EAN A B IL IT Y = -0 .0 6
SD OF A B IL IT Y = 1.14

Table 3.2.8 provides item characteristic curves and fit statistics. The tests o f  fit 
include a division o f  the calibration sample into ability subgroups by score level. Three 
groups have been made out o f  the KCT sample, the 10 persons with scores from 1 to 6, 
the 12 persons at score 7 and the 12 persons with scores from 8 to 13. Control over 
group size and hence over the number o f groups used is asserted through the control 
parameter NGROP. An evaluation o f  item difficu lty invariance over these ability groups is 
made by comparing fo r each item its d ifficu lty estimates over the different groups. The 
tests o f  fit  are thus sample-dependent. However, i f  the difficulty estimates they use pass 
these tests, then those estimates are sample-free as far as that sample is concerned. O f 
course, successful item fit  in one sample does not guarantee fit in another. However, as 
the ability groups within a given sample are arranged by scores, we do obtain information 
about the stability o f  item difficulties over various abilities and therefore can see whether 
our items are displaying sufficient invariance over these particular ability groups to 
qualify the items fo r use as instruments o f objective measurement.
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In the ‘Item Characteristic Curve”  panel o f  Table 3.2.8 we have the proportion o f 
correct answers given by each ability group to each item. The score range and mean 
ability for each group are given at the bottom o f each column. We expect these ICCs to 
increase as we move from le ft to right, from less able to more able score groups, and for 
the most part we see that in Table 3.2.8 they do. However, Item 7 does show a rather 
implausible pattern. A  greater proportion o f persons get it correct in the lowest score 
group than in the middle one!

In the middle panel o f  Table 3.2.8 we have the differences in ICC proportions for 
each ability group between those observed and those predicted by the Rasch measurement 
model. Here we can see where the largest proportional departures occur and in which 
direction they go. Again, Item 7 is out o f  line with the other items, especially for the 
lowest ability group.

In the “ Analysis o f  F it”  panel o f  Table 3.2.8 we have a series o f fit mean squares. 
These fit  statistics are mean square standardized residuals for item-by-person responses 
averaged over persons, and partitioned into two components, one between ability groups 
and the other within ability groups. These mean squares increase in magnitude away from 
a reference value o f  1 as the observed ICC departs from the expected ICC, i.e., when too 
many high-ability persons fail an easy item or too many low-ability persons succeed on a 
difficult one. The statistical significance o f  large values can be judged by comparing the 
observed mean squares with their expected value o f 1 in terms o f  the expected standard 
errors given at the bottom  o f  the table.

The “ total”  mean square evaluates the general agreement between the variable 
defined by the item and the variable defined by all other items over the whole sample. 
Only Item 7 is significantly out o f  line, with an observed mean square o f 1.73, more than 
three times its expected standard error o f  0.24 above its expected value o f  1.

The “ between-group”  mean square evaluates the agreement between the observed 
item characteristic curve and the best fitting Rasch model curve over the ability sub
groups. Again, Item 7 is out o f  line with a mean square o f 3.89, more than three times 
its standard error o f  0.82 above 1.

The “ within-group”  mean square summarizes the degree o f  misfit remaining within 
ability groups after the “ between-group”  misfit has been removed from the “ total” . Here, 
Item 7 shows a m isfit o f  1.52 against an expected value o f  1 and a standard error o f  0.25.

The discrimination index shown in the next to last column o f Table 3.2.8 describes 
the linear trend o f departures from the model across ability groups expressed around a 
model value o f  1. When this index is near 1, then the observed and expected ICCs are 
close together over the reference points defined by the ability grouping.

When the index is substantially less than 1, then the observed ICC is flatter them 
expected and the particular item is failing to differentiate among abilities as well as the 
other items do. This condition, o f course, tends to go with a lower point biserial cor
relation between item response and total test score. However, the discrimination index i< 
less influenced in its magnitude than the point biserial by how central the item is to the 
sample or how dispersed in ability the sample is.

When the index is substantially greater than 1, then the item gives the appearance o f 
differentiating abilities more distinctly than the average items in the test. The cause o f 
this unusual “ discrimination”  must then be investigated. It is almost always found to be 
caused by a local interaction between a secondary characteristic o f  the item and a
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secondary characteristic o f the sample, a sample-dependent condition which, upon identi
fication, is generally judged to be too idiosyncratic to be useful in a general measurement 
system.

The fit statistics in Table 3.2.8 show that Item 7 misfits both “ between”  and “ within”  
ability groups and that its item characteristic curve is on the flat side. No other item 
shows a significant misfit. Item 14 does show a low point biserial but its fit  statistics are 
not out o f line and, like Items 15, 16, and 17, its low point biserial is due primarily to 
its difficulty for these persons. Notice how the magnitude o f the biserial correlation varies 
widely with the level o f  the ICC quite independently o f how well the items fit!

This leaves us with the misfit observed for Item 7. What shall we conclude about this 
misfit? Is it due to a general flaw in Item 7 or is it due to an interaction between Item 7 
and a few aberrant person response patterns? It could be that Item 7 functions satisfac
torily with most persons and that the misfit observed here can be traced to the irregular 
responses o f just a few persons. Should that be the case we might decide to retain Item 7 
in the test and to question, instead, the plausibility o f  the response patterns o f these few 
unusual persons. We will discuss item and person fit in detail in Chapter 4.

TABLE 3.2.9

ITEM CALIBRATION SUMMARY 
BY PROX

SERIAL ORDER D IF F IC U L TY  ORDER

SEQ ITEM ITEM DISC FIT SEQ ITEM ITEM DISC FIT
NUM NAME D IFF IN D X MN SQ NUM NAME D IFF IN D X MN SQ

4 3 -3 .8 7 1.30 0.49 4 3 -3 .8 7 1.30 0.49
5 3 -3 .2 9 1.35 0.64 5 3 -3 .2 9 1.35 0.64
6 3 -2 .8 8 1.07 0.90 7 4 -3 .2 9 0.48 1.73
i 4 -3 .2 9 0.48 1.73 6 3 -2 .8 8 1.07 0.90
8 4 -2 .01 1.49 0.48 9 4 -2 .8 8 1.44 0.27
9 4 -2 .8 8 1.44 0.27 8 4 -2 .01 1.49 0.48

10 4 -1 .3 9 1.40 0.83 10 4 -1 .3 9 1.40 0.83
11 5 0.55 1.04 0.71 11 5 0.55 1.04 0.71
12 5 1.77 0.80 0.72 13 5 1.52 1.49 0.44
13 5 1.52 1.49 0.44 12 5 1.77 0.80 0.72
14 6 2.80 0.81 0.91 14 6 2.80 0.81 0.91
15 6 4.32 1.33 0.17 16 6 4.32 1.33 0.17
16 6 4.32 1.33 0.17 17 6 4.32 1.33 0.17
17 6 4.32 1.33 0.17 15 6 4.32 1.33 0.17

MEAN 0.00 1.19 0.62
S.D. 3.15 0.31 0.42

FIT  ORDER
SEQ ITEM ITEM DISC FIT POINT
NUM NAME D IFF IN D X MN SQ BISER

16 6 4.32 1.33 0.17 0.33
17 6 4.32 1.33 0.17 0.33
15 6 4.32 1.33 0.17 0.33
9 4 -2 .8 8 1.44 0.27 0.61

13 5 1.52 1.49 0.44 0.58
8 4 -2 .01 1.49 0.48 0.69
4 3 -3 .8 7 1.30 0.49 0.40
5 3 -3 .2 9 1.35 0.64 0.42

11 5 0.55 1.04 0.71 0.54
12 5 1.77 0.80 0.72 0.42
10 4 -1 .3 9 1.40 0.83 0.54
6 3 -2 .8 8 1.07 0.90 0.40

14 6 2.80 0.81 0.91 0.20
7 4 -3 .2 9 0.48 1.73 0.23
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Table 3.2.9 summarizes the item calibration information in three useful arrangements. 
We have there fo r each item its name, difficulty, discrimination index and total fit mean 
square listed first by serial order, second by difficulty order, and third by fit  order. While 
in the KCT example we have only a few  items to deal with, on longer tests the convenient 
reordering o f  these items by difficulty and by fit helps us to  find misfitting items and to 
grasp the pattern o f  misfit, i f  there is one. In our example we see again that the item with 
the greatest misfit, Item 7, is identified for us at the bottom o f the third panel o f  Table 3.2.9.

3.3 C O M PA RING  PRO X BY H A N D  W ITH  PRO X BY COMPUTER

N ow  we can compare the PRO X  estimation results for item difficulties and person 
measures obtained by hand with those produced by computer. The data on PROX by 
hand for item difficulties and person measures comes from Tables 2.4.5 and 2.4.6 in 
Chapter 2. The data on PRO X  by computer come from Tables 3.2.6 and 3.2.7. These 
data have been compiled into Tables 3.3.1 and 3.3.2.

In Table 3.3.1, each item is listed with its calibration by hand and by computer. The 
standard error fo r each item as computed by hand and by computer is also given. The 
results from  PRO X  by hand and PRO X  by computer are virtually the same.

_________________  TAB LE 3.3.1 ________________

A COMPARISON OF ITEM CALIBRATIONS 
AND THEIR STANDARD ERRORS FOR 
PROX BY HAND AND BY COMPUTER

C A LIB R A TIO N STA N D A R D  ERROR

Item Hand Computer Difference Hand Computer D iff ere

4 -3 .9 -3 .9 0.0 1.0 0.8 0.2
5 -3 .3 -3 .3 0.0 0.8 0.7 0.1
6 -2 .9 -2 .9 0.0 0.7 0.6 0.1
7 -3 .3 -3 .3 0.0 0.8 0.7 0.1
8 -2 .0 -2 .0 0.0 0.6 0.5 0.1
9 -2 .9 -2 .9 0.0 0.7 0.6 0.1

10 -1 .4 -1 .4 0.0 0.5 0.4 0.1
11 +0.6 +0.5 0.1 0.5 0.4 0.1

12 +1.7 +1.8 -0 .1 0.6 0.5 0.1

13 +1.5 +1.5 0.0 0.6 0.5 0.1

14 +2.8 +2.8 0.0 0.8 0.7 0.1

15 +4.3 +4.3 0.0 1.3 1.2 0.1

16 +4.3 +4.3 0.0 1.3 1.2 0.1

17 +4.3 +4.3 0.0 1.3 1.2 0.1

M EAN 0.00 0.00 0.82 0.71

SD 3.13 3.15 0.29 0.29

The ability measures and their standard errors are given in Table 3.3.2. Again, the 
differences between the two methods are minimal. Only the standard errors o f  measure
ment show a difference o f any magnitude. This difference is due to the use o f a more 
accurate but also more laborious formula in PROX by computer. Thus, with the mild 
exception o f the standard errors o f measurement, the very simple PROX by hand and 
PRO X  by computer produce virtually the same results.



56 BEST TEST DESIGN

A COMPARISON OF PERSON MEASURES 
AND THEIR STANDARD ERRORS FOR PROX 

BY HAND AND BY COMPUTER

TABLE 3.3.2 _____________

MEASURE STANDARD ERROR

Score Hand Computer Difference Hand Computer Difference

1 -5 .4 -5 .4 0.0 2.2 1.5 0.7
2 -3 .8 -3 .8 0.0 1.6 1.1 0.5
3 -2 .8 -2 .7 -0 .1 1.4 0.9 0.5
4 -1 .9 -1 .9 0.0 1.2 0.9 0.3
5 -1 .2 -1 .2 0.0 1.2 0.8 0.4
6 -0 .6 -0 .6 0.0 1.1 0.8 0.3
7 0.0 0.0 0.0 1.1 0.8 0.3
8 +0.6 +0.6 0.0 1.1 0.8 0.3
9 +1.2 +1.2 0.0 1.2 0.8 0.4

10 +1.9 +1.9 0.0 1.2 0.9 0.3
11 +2.8 +2.7 0.1 1.4 0.9 0.5
12 +3.8 +3.8 0.0 1.6 1.1 0.5
13 +5.4 +5.4 0.0 2.2 1.5 0.7

MEAN 0.00 0.00 1.42 0.98

SD 3.08 3.06 0.39 0.25

3.4 A N A LY ZIN G  KCT W ITH THE UCON PROCEDURE

Now that we have seen how PROX by hand compares with PROX by computer, we 
can turn to a slightly more elaborate and also more accurate procedure which is not 
suitable for hand work but is convenient and economical to apply by computer. This is 
the UCON procedure, developed by Wright and Panchapakesan in 1966 (1969) and 
further reviewed and tested by Wright and Douglas in 1974 (1975b, 1977a) and Wright 
and Mead in 1975 (1975, 1976). The computer output from UCON is similar in form to 
that from PROX. The UCON analysis o f  the KCT data is shown in Tables 3.4.1 through
3.4.4. Only those tables which contain results different from the PROX analysis are 
presented.

Table 3.4.1 gives the test items with their UCON calibrations and standard errors. 
UCON uses PROX item difficulties as its point o f departure and these are given in the far 
right column o f the table. Table 3.4.2 gives the UCON ability measure associated with 
each score and the standard error for each measure. The larger standard errors at scores 7 
and 8, for abilities between ± 2 logits are caused by the bimodal distribution o f item 
difficulties shown in Table 3.4.1. Six o f the 14 items have difficulties below -3.2 logits, 
while another six have difficulties greater than +1.8 logits. This leaves only two items to 
function in the 5 logit range between -3 .2  and +1.8 and the standard errors o f measure
ment in that region are accordingly higher.



ITEM CALIBRATION BY COMPUTER 57

  TAB LE 3.4.1 _____

CALIBRATION BY UCON

D IF F IC U L T Y  EXPANSION FACTOR 1.31

A B IL IT Y  EXPANSIO N FACTOR 2.10

NUM BER OF ITE R A T IO N S  = 7

SEQUENCE ITEM ITEM STA N DA RD LAST D IF F PROX
NUMBER NAME D IF F IC U L T Y ERROR CHANGE D IFF

4 3 -4 .1 8 6 0.816 -0 .0 2 5 -3 .8 6 5
5 3 -3 .6 4 8 0.709 -0 .0 2 3 -3 .2 9 4
6 3 -3 .2 2 0 0.647 -0 .021 -2 .8 7 6
7 4 -3 .6 4 8 0.709 -0 .0 2 3 -3 .2 9 4
8 4 -2 .241 0.547 -0 .0 1 5 -2 .0 0 7
9 4 -3 .2 2 0 0.647 -0 .021 -2 .8 7 6

10 4 -1 .4 9 8 0.489 -0 .0 0 9 -1 .3 8 8
11 5 0.760 0.456 0.006 0.547
12 5 2.135 0.556 0.015 1.767
13 5 1.861 0.529 0.014 1.518
14 6 3.214 0.705 0.022 2.805
15 6 4.564 1.076 0.027 4.321
16 6 4.564 1.076 0.027 4.321
17 6 4.564 1.076 0.027 4.321

ROOT MEAN SQUARE = 0.022

TAB LE 3.4.2

MEASUREMENT BY UCON

COMPLETE SCORE EQ U IV A LEN C E TAB LE

RAW PERSON S TA N DA RD
SCORE COUNT A B IL IT Y ERROR

13 0 5.09 1.14
12 0 4.11 0.95
11 2 3.31 0.92
10 1 2.53 0.93
9 4 1.71 0.96
8 5 0.81 1.03
7 12 -0 .2 2 1.07

6 3 -1 .1 9 0.97

5 2 -1 .9 6 0.86
4 2 -2 .61 0.81
3 2 -3 .21 0.81
2 1 -3 .8 6 0.88
1 0 -4 .7 3 1.10

MEAN A B IL IT Y  = 

SD OF A B IL IT Y  =

-0 .1 6

1.45
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Table 3.4.3 gives the observed Item Characteristic Curve shown in Table 3.2.8, the 
departures o f  this ICC from the model ICC as expected by UCON estimates and the fit 
mean squares resulting from the UCON analysis. Table 3.4.4 summarizes the UCON 
calibration in the same form as Table 3.2.9 summarizes the PROX calibration.

TAB LE 3.4.4

ITEM CALIBRATION SUMMARY
BYUCON

SER IA L  ORDER D IF F IC U L T Y  ORDER

SEQ ITEM ITEM DISC FIT SEQ ITEM ITEM DISC F IT
NUM NAME D IF F IN D X MN SQ NUM NAME D IFF IN D X MN SQ

4 3 -4 .1 9 1.13 0.37 4 3 -4 .1 9 1.13 0.37
5 3 -3 .6 5 1.17 0.53 5 3 -3 .6 5 1.17 0.53
6 3 -3 .2 2 0.97 0.90 7 4 -3 .6 5 0.60 1.98
7 4 -3 .6 5 0.60 1.98 6 3 -3 .2 2 0.97 0.90
8 4 -2 .2 4 1.20 0.44 9 4 -3 .2 2 1.22 0.23
9 4 -3 .2 2 1.22 0.23 8 4 -2 .2 4 1.20 0.44

10 4 -1 .5 0 1.10 0.79 10 4 -1 .5 0 1.10 0.79
11 5 0.76 0.96 0.77 11 5 0.76 0.96 0.77
12 5 2.14 0.82 0.97 13 5 1.86 1.34 0.40
13 5 1.86 1.34 0.40 12 5 2.14 0.82 0.97
14 6 3.21 0.82 1.33 14 6 3.21 0.82 1.33
15 6 4 .56 1.08 0.13 16 6 4.56 1.08 0.13
16 6 4 .56 1.08 0.13 17 6 4.56 1.08 0.13
17 6 4 .56 1.08 0.13 15 6 4.56 1.08 0.13

MEAN 0.00 1.04 0.65

S.D. 3.44 0.19 0.53

F IT  OR D ER

SEQ ITEM ITEM DISC F IT POINT
NUM NAME D IF F  IN D X MN SQ BISER

16 6 4.56 1.08 0.13 0.33
17 6 4.56 1.08 0.13 0.33
15 6 4.56 1.08 0.13 0.33
9 4 -3 .2 2 1.22 0.23 0.61
4 3 -4 .1 9 1.13 0.37 0.40

13 5 1.86 1.34 0.40 0.58
8 4 -2 .2 4 1.20 0.44 0.69
5 3 -3 .6 5 1.17 0.53 0.42

11 5 0.76 0.96 0.77 0.54
10 4 -1 .5 0 1.10 0.79 0.54

6 3 3.22 0.97 0.90 0.40
12 5 2.14 0.82 0.97 0.42
14 6 3.21 0.82 1.33 0.20

7 4 3.65 0.60 1.98 0.23
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In Chapter 2 we demonstrated the feasibility o f hand calibration and showed the 
computation in detail. This was done to provide a basis for understanding the computer 
programs which accomplish the same task and their resulting outputs. The comparison 
o f PROX by hand to PROX by computer demonstrates their comparability. In UCON 
we have a program which provides greater accuracy. Our next step is to compare UCON 
to PROX.

3.5 COMPARING UCON TO PROX W ITH THE KCT DATA

Table 3.5.1 gives the calibrations and standard errors for the KCT data produced 
by the UCON and PROX methods. The calibration differences between UCON and PROX 
run about ± .3 logits. The difference between their standard errors is at most ± .1 logits.

_______________ TABLE 3.5.1 _______________

A COMPARISON OF ITEM CALIBRATIONS 
AND STANDARD ERRORS FOR 

UCON AND PROX BY COMPUTER

CALIBRATIO N STANDARD ERROR

Item UCON PROX Difference UCON PROX Difference

4 -4 .2 -3 .9 -0 .3 0.8 0.8 0.0
5 -3 .6 -3 .3 -0 .3 0.7 0.7 0.0
6 -3 .2 -2 .9 -0 .3 0.6 0.6 0.0
7 -3 .6 - -3 .3 -0 .3 0.7 0.7 0.0
8 -2 .2 -2 .0 -0 .2 0.6 0.5 0.1
9 -3 .2 -2 .9 -0 .3 0.6 0.6 0.0

10 -1 .5 -1 .4 -0 .1 0.5 0.4 0.1
11 +0.8 +0.5 0.3 0.5 0.4 0.1
12 +2.1 +1.8 0.3 0.6 0.5 0.1
13 +1.9 +1.5 0.4 0.5 0.5 0.0
14 +3.2 +2.8 0.4 0.7 0.7 0.0
15 +4.6 +4.3 0.3 1.1 1.2 -0 .1
16 +4.6 +4.3 0.3 1.1 1.2 -0 .1
17 +4.6 +4.3 0.3 1.1 1.2 -0 .1

MEAN 0.00 0.00 0.74 0.71

SD 3.44 3.15 0.22 0.29

Table 3.5.2 gives the person measures and their standard errors for UCON and 
PROX. There the differences between UCON and PROX methods run as much as ± .7 
logits for the measures.

We see that using the more accurate UCON procedure which takes into account the 
particular distributions o f item difficulties and person abilities does make a tangible dif
ference for the KCT data. As we have seen these KCT items have a distinctly bimodal 
distribution not well handled by the PROX procedure. Although, these differences 
between PROX and UCON are never as much as a standard error, and hence could not be
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considered statistically significant, nevertheless, they might trouble some practitioners. 
Their cause, however, is the brevity o f  this KCT example and the bimodality o f  its item 
difficulties. For larger data sets and for more uniform item difficulty distributions, the 
results o f  PRO X  and UCON are virtually indistinguishable.

TABLE 3.5.2

A COMPARISON OF PERSON MEASURES 
AND STANDARD ERRORS FOR 

UCON AND PROX BY COMPUTER

MEASURE STA N D A R D  ERROR

Score UCON PROX Difference UCON PROX Difference

1 -4 .7 -5 .4 0.7 1.1 1.5 -0 .4
2 -3 .9 -3 .8 -0 .1 0.9 1.1 -0 .2
3 -3 .2 -2 .7 -0 .5 0.8 0.9 -0 .1
4 -2 .6 -1 .9 -0 .7 0.8 0.9 -0 .1
5 -2 .0 -1 .2 -0 .8 0.9 0.8 0.1
6 -1 .2 -0 .6 -0 .6 1.0 0.8 0.2
7 -0 .2 0.0 -0 .2 1.0 0.8 0.2
8 0.8 0.6 0.2 1.0 0.8 0.2
9 1.7 1.2 0.5 1.0 0.8 0.2

10 2.5 1.9 0.6 0.9 0.9 0.0
11 3.3 2.7 0.6 0.9 0.9 0.0
12 4.1 3.8 0.3 1.0 1.1 -0 .1
13 5.1 5.4 -0 .3 1.1 1.5 -0 .4

M EAN 0.0 0.0 1.0 1.0

SD 3.2 3.1 0.1 0.3

3.6 A CO M PUTING  A LG O R ITH M  FOR PROX

Here is a concise implementation o f the PROX procedure, suitable for computer 
programming:

1. Edit the binary data matrix o f  person-by-item responses such that no 
person has a zero or a perfect score and no item has a zero or a perfect 
score. This editing may go beyond a single stage when the removal o f  an 
item necessitates the removal o f  some persons, and vice versa. The final 
outcome is a vector o f  item scores (Sj) where i goes from 1 to L  and a 
vector o f  person score frequencies (nr) where r goes from 1 to L - l .

Let: Xj = Cn [ (N — Sj)/sj]

x. = 2  x . /L

y r = Cn [ r / ( L  - r ) ]

[3 .6 .1 ]

[3 .6 .2 ]

[3 .6 .3 ]
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L -1

y. = 2  nr y r /  N [3.6.41

D = 2  (Xj _ x . ) 2 /  2 .8 9  ( L - 1) [3.6.5]

B = z ’ n , (y r - y . ) 2 /  2 .8 9  ( N - 1) [3.6.6]
r

G = BD [3.6.7]

3. Calculate the expansion factors:

X = [(1 + D ) /  (1 - G )] 1/4 [3.6.8]

Y  = [(1 + B) /  (1 - G )] 54 . [3.6.9]

4. Estimate the item difficulties as:

d, = Y  <Xj —x .) f fo r  i = 1, L [3.6.10]

5. With standard errors of:

SE(dj )  = Y ( N / S j  (N -Sj ) ]  14. [3.6.11]

6. The ability estimates for this set o f items are given by:

br = X yr, for r = 1, L-1 [3.6.12]

7. With standard errors of:

SE (b r) = X [ L / r ( L— r ) ] 1/4 . [3.6.13]

3.7 THE UNC O N DITIO N AL PROCEDURE UCON

The Rasch model for binary observations defines the probability o f a response x„j to 
item i by person v as

p { x i>i l0y .5 i } = e x P [x i>i(0j; —5 1)] / [  1 + e x P IP? —5 j) 1 [3.7.1]

[ 1 i f  correct
where xt»i = \ 0 otherwise,

Pv = ability parameter o f person v,

5! = difficulty parameter o f item i.

The likelihood A o f the data matrix ( (x „ , ) )  is the continued product o f Equation 
[3.7.1] over all values o f v and i, where L is the number o f items and N is the number o f 
persons with test scores between 0 and L, since scores o f 0 and L lead to infinite ability 
estimates.

A = exp [ Z  2  x„., ( 0 „ - 6 , ) ] /  8  h [1 + exp ( 0 ^ - 5 . ) ]  [3.7.2]
v i v I
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Upon taking logarithms and letting

L
2  x^j = rv be the score o f person v
i

N
and 2 x,,j = Sj be the score o f item i,

the log likelihood X becomes

N L N L

X = 2n A = 2 r „0 „ -  2  8,5, -  2  2  2n [1 + exp (0V -6,)1 . (3.7.3]

The reduction o f  the data matrix ( (x ^ ) )  to  its margins (r „ ) and (s,) and the separa

tion o f rvPv and S|8, in Equation 3.7.3 establish the sufficiency o f r„ for estimating $v

and o f  S| fo r estimating 5 j, as well as the objectivity o f  these estimates.

It is important to recognize, o f  course, that although rv and s, lead to sufficient 
estimates o f and 5, they themselves are not satisfactory as estimates. Person score r„ 
is not free from the particular item difficulties encountered in the test. Nor is item score 
S| free from the ability distribution o f  the persons who happen to  be taking the item. To 
achieve independence from these local factors requires adjusting the observed r„ and Sj 
for the related item difficu lty and person ability distributions to produce the test-free 
person measures and sample-free item calibrations desired.

L
With the side condition 2  8( = 0 to restrain the indeterminacy o f origin in the

i
response parameters, the first and second partial derivatives o f X with respect to and 
6j become

9X l
1 0 “  “  r„ -  2  p • 1 ,N [3.7.4]

a2x L
i J j  = -  2 ^ , ( 1  ~nvi) [3.7.5]

3X n
and 35. = -Sj + 2  i = 1,L [3.7.6]

32 X N
2 7r„i (1 ~nvi) [3.7.7]

where irvi = exp(j3v - 5 ,)/[ 1 + exp (j3v -8 j)]

These are the equations necessary for unconditional maximum likelihood estima
tion. The solutions for item difficulty estimates in Equations 3.7.6 and 3.7.7 depend on 
the presence o f  values for the person ability estimates. Because unweighted test scores are 
the sufficient statistics for estimating abilities, all persons with identical scores obtain 
identical ability estimates. Hence, we may group persons by their score, letting

br be the ability estimate fo r any person with score r, 
d, be the difficu lty estimate o f  item i, 
nr be the number o f  persons with score r,



and write the estimated probability that a person with a score r will succeed on item i 
as

p ri = exp (b r—d j) / [  1 + exp (b r -  d s)] . [3 .7 .8 ]

N L -1
Then 2  nVi 2  nrpr, , as far as estimates are concerned.

V r

A  convenient algorithm for computing estimates (d ,) is:

1. Define an initial set o f (br) as

64  BEST TEST DESIGN

b r (0) = 8n^ T ' T _j  r = 1 ,L  -  1 [3 .7 .9 ]

2. Define an initial set o f  (d ,), centered at d.=0, as

/L  i = 1 ,L  [3 .7 .1 0 ]d, (0) = fir

where br<0) is the maximum likelihood estimate o f for a test o f  L  equivalent 

items centered at zero and d,101 is the similarly centered maximum likelihood 
estimate o f 5, for a sample o f N equal-ability persons.

3. Apply Newton’s method to Equation 3.7.6 to improve each dj according t o ,

- S, * 'Li \ Prtli)
d . Ii T 1 1 = d , ' i » -    i = 1 ,L  [3 .7 .1 1 ]

v  (j) nOK-  2  n rp rl (1 ~ Pri )
r

until convergence at |dj(i+ 11 -  dj<i} | <  .01

where Pri*'* = exP (b r—d 8 * * * )/[ 1 + exp (br—ds<j>)] [3 .7 .1 2 ]

and the current set o f (br) are given by the previous cycle.

4. Recenter the set o f (dj) at d. = 0.

5. Using this improved set o f  (dj), apply Newton’s method to Equation 3.7.4 to
improve each br according to

r -  2  p ( [" ’I K ri

br<m + 1) = br<m) l  r = 1, L — 1 [3 .7 .1 3 ]
- 2 p'T* (1 + p [ r ’ )

i

until convergence at |br(m +11 -  br(m 11 <  .01
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where p r , <m 1 = exp (br(m ’ -d,)/! 1 + exp (br(m 1 - d, ) ] [3 .7 .1 4 ]

and the current set o f  (dj ) are given by the previous cycle.

6. Repeat steps (3 ) through (5 ) until successive estimates o f the whole set o f  (dj) 
become stable at

2  (d j<k + 1 ’ - d j < k )) 2 /L  <  .0 0 0 1  , [3 .7 .1 5 ]

which usually takes three or four cycles.

7, Use the reciprocals o f  the negative square roots defined in Equation 3.7.7 as asymp
totic estimates o f the standard errors o f  difficu lty estimates,

SE (d ,) = [ 2 1n rp r i(1 -  p r i ) ] _V4 . i = 1, L [3 .7 .1 6 ]
r

Andersen (1973) has shown that the presence o f the ability parameters (/3„) in the 
likelihood equation o f  this unconditional approach leads to biased estimates o f item dif
ficulties (5j). Simulations undertaken to test UCON in 1966 indicated that multiplying 
the centered item difficu lty estimates by the coefficient [ (L  -  1)/L] compensates for 
most o f this bias. (Fo ra  discussion and evaluation o f the unbiasing coefficient [ (L  -  1)/L] 
see Wright and Douglas, 1975b or 1977a).



4  THE ANALYSIS OF FIT

4.1 IN TRO DU CTIO N

Procedures for item calibration by hand were given in Chapter 2, and calibration 
output from computer programs was discussed in Chapter 3. However, these calibration 
procedures are only part o f a complete analysis o f a sample o f data. The Rasch model 
makes certain plausible assumptions about what happens when a person takes an item, 
and a complete analysis must include an evaluation o f how well the data fit these assump
tions. When, for example, a person answers all the hard items o f a test correctly but then 
misses several easy items, we are surprised by the resulting implausible pattern o f re
sponses. While we could examine individual records by eye for their implausibility, in 
practice we want to put such evaluations on a systematic and manageable basis. We want 
to be able to be specific and objective in our reactions to implausible observations.

Even if  the measurement model tends to fit a particular application, we cannot 
predict in advance how well new items (or even old ones) will continue to work in every 
situation in which they might be applied, nor can we know in advance how all persons 
will always respond. Therefore, if  we are serious in our attempts to measure, we must 
examine every application to see how well each set o f responses corresponds to our model 
expectations. We must evaluate not only the plausibility o f the sample o f persons’ 
responses, but also the plausibility o f each person’s responses to the set o f itdms in his 
test. To do this we must examine the response o f each person to each item to determine 
whether it is consistent with the general pattern o f responses observed.

4.2. THE KCT RESPONSE M A T R IX

We begin the study o f fit analysis by returning to the item-by-person data matrix o f 
the KCT given in Table 2.4.1. In this table we have the edited and ordered responses o f 
34 persons to 14 KCT items. The editing process removed items answered correctly by 
everyone or no one, and persons answering correctly all or none o f the items. The 
remaining persons and items have been arranged in order o f increasing item and person 
score.

This item-by-person matrix o f  l ’s and 0 ’s is the complete record o f usable person 
responses to the items o f the test. By inspection we see that the increasing difficulty o f 
the KCT items has divided the matrix roughly into two triangles: a lower left triangle 
dominated by correct responses signified by l ’s and an upper right triangle dominated by 
incorrect responses signified by 0 ’s.

This is the pattern we expect. As items get harder, going from left to right in Table 
2.4.1, any particular person’s string o f successes should gradually peter out and end in a 
string o f failures on the items much too hard for that person. Similarly, when we examine 
the pattern o f responses for any item by proceeding from the bottom o f Table 2.4.1 up

66
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that item ’s column over persons o f  decreasing ability, we expect the string o f successes at 
the bottom  to peter out into failures as the persons become too low in ability to succeed 
on this item.

From our calibration o f the KCT items we have estimates o f  the item difficulties 
(dj) and o f  the abilities (br) which go with the possible scores (r) on this test. In Table
4.2.1 we show the matrix o f responses from Table 2.4.1 to which we have added, from 
our calibration, the item difficulties (d;) across the bottom and the abilities (br) asso
ciated with each score down the right column. The item difficulties and score abilities in 
Table 4.2.1 are those estimated with PRO X  by hand from Chapter 2.

Notice how Table 4.2.1 is arranged into six sections in order to bring out the pattern 
o f  responses. The 14 items are partitioned into the 7 easier and the 7 harder. The 34 
persons are partitioned into the 10 scoring below seven, the 12 scoring exactly seven and 
the 12 scoring above seven. In the lower left section there are only l ’s. Every higher 
ability person got every easier item correct. In the upper right section there are only 0 ’s. 
Every lower ability person got every harder item incorrect. But in the other four sections 
there is a pattern o f  l ’s and 0 ’s that must be analyzed.

When we examine the pattern o f  responses in these data for unexpected “ corrects”  
and “ incorrects,”  we find that Table 4.2.1 shows several exceptions to a pattern o f  all l ’s 
followed by all 0 ’s. O f course, we do not expect every single person to fail for the first 
time at a particular point and then always to continue to do so on all harder items. We 
expect to find a run o f  successes and failures leading finally to a run o f failures as the 
items finally become too  difficult. However, some o f the exceptions in Table 4.2.1 seem 
to exceed even this expectation. T o  facilitate their examination we have circled those 
responses which seem most unexpected given the overall pattern.

The locations o f  these apparently surprising responses lead us to examine more 
closely some o f  the person records in Tables 4.2.1.

For Person 2, the pattern o f responses is almost too reasonable: all l ’s
followed by all 0 ’s.

For Person 29, in contrast, the pattern is quite puzzling; it shows both
failures on easy items and success on a hard one.

The expected pattern is the one we see in the records o f Persons 12 or 23. Here each
record shows a string o f  l ’s with a few  adjacent and alternating l ’s and 0 ’s, followed by a 
string o f  0 ’s.

Turning to the four most questionable records, we see:

Person 11, failed Item 4 but passed Items 5 through 9 before failing
all the remaining items.

Person 17, passed Item 4, missed Item 5, passed Items 6 through 10
and then failed the remaining items.

Person 13, passed Items 4 and 5, missed Items 6 and 7, passed Items 8
through 12 and then missed the remaining ones.
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Person 29, passed Items 4 through 6, missed Items 7 and 8 , passed
Items 9 through 11, missed Items 12 and 13 and then 
passed Item 14 before missing all the remaining items.

There are a few  other records that might also be examined such as Persons 3 and 12, 
but as we “ eyeball”  this small matrix, we can see that the other records are less 
exceptional.

Now  that we have found some instances o f possibly irregular responses, we want a 
systematic way to  judge the degree o f  unexpectedness seen in these response patterns.

The Rasch model bases calibration and measurement on two expectations: (1 ) that 
a more able person should always have a greater probability o f  success on any item than a 
less able person, and ( 2) that any person should always be more likely to do better on an 
easier item than on a harder one. When an observed pattern o f  responses shows significant 
deviations from these expectations, we can use the particulars o f the model and the 
person and item estimates to calculate an index o f how unexpected any particular person 
or item record is.

4.3  TH E A N A LY S IS  O F F IT  BY H AN D

The first step in our analysis o f  response plausibility or fit is to observe the 
difference (b „ -  d j) between the estimates o f ability bj, and difficulty dj for each person 
and item. When this difference is positive, it means that the item should be easy for the 
person. The more positive the difference, the easier the item and hence the greater our 
expectation that the person will succeed. Similarly, as the difference between person 
ability and item difficu lty becomes more and more negative, the item should be more and 
more d ifficu lt for that person, and our expectation o f his failure increases.

In order to  focus our application o f  these ideas, we have taken from Table 4.2.1 the 
responses o f  the six persons with the most implausible patterns to the seven items on 
which their implausible responses occur. These selected responses comprise Table 4.3.1. 
With this table we can more easily study the outstanding unexpected “ correct”  or 
“ incorrect”  responses.

T o  begin with, we can tabulate the number o f unexpected responses for each person 
and item in Table 4.3.1 to arrive at a simple count with which to describe what is 
occurring. We see that Persons 13 and 29 make the worst showing with three unexpected 
responses each. However, this simple count does not tell us how to weigh and hence how 
to judge the degree o f  unexpectedness in these responses.

One way statisticians think about the outcomes o f probabilistic events like dice- 
rolling, coin-tossing and getting an item correct on a test is to define the expected 
value o f  the variable realized in any response x Ul, say o f person v to item i, as the proba
bility itv| o f that response occurring. This is useful because, i f  we were to obtain re
sponse x vi a great many times and its genesis were more or less governed by the prob
ability TTyj, then we would expect success to occur about nv-, o f  the time, just as we 
expect “ 6”  to  come up about one-sixth o f the time when we roll dice and “ heads”  to 
come up about one-half o f  the time when we toss coins.
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TABLE 4.3.1

SELECTED PERSON-TO-ITEM RESPONSES (*„,) WITH
UNEXPECTED RESPONSES CIRCLED

ITEM NUMBER OF 
UNEXPECTED 
RESPONSESPERSON 4 5 7 6 8 12 14

rcnaun
ABILITY*

11 1 1 1 1 0 0 1 -1.2

12 1 1 1 ® ® 0 0 2 -1.2

17 1 1 1 1 0 0 1 -0.6

3 1 1 1 1 1 © 0 1 0.0

13 1 1 ® © 1 © 0 3 0.0

29 1 1 ® 1 ® 0 © 3 0.0

Number of
Unexpected
Responses 1 1 2 2 2 2 1 11

Item
Difficulty * -3 .9 -  3.3 -  3.3 - 2 .9 -  2.0 1.7 2.8

"1" expected 
"0" unexpected 

*From Tables 2.4.5 and 2.4.6

”0"
"1"

expected
unexpected

Our model estimates the probability o f instances o f response x vi as

p̂ i = exp (bj,- dj)/[1 + exp (b„- d,)] 

where bj, = the estimated ability measure o f person v

and d| = the estimated difficulty calibration o f item i.

Thus we can use pvi as an estimate o f the expected value o f instances o f x„j.

The same theory tells us that the expected variance o f instances o f xvi is n V l ( l  -  v v i )  

which we can estimate with pvi( l  -  p „ j). The result is an estimated standard residual zui 
from any x v, o f

Zj;| — (Xj/j — Pj;j)/[Pj;i(1 — PyiU ^ • [4.3.1]

To estimate this standard residual zvi, we subtract from the observed xvi its esti
mated expected value p„j and standardize this residual difference by the divisor

[p„i (1 ~ P ^ ) ] 54
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which is the estimated binomial standard deviation o f such observations. To  the extent 
that our data approximate the model, we expect this estimated residual zvi to be distribu
ted more or less normally with a mean o f about 0 and a variance o f  about 1.

Thus, as a rough but useful criterion for the fit o f  the data to the model, we can 
examine the extent to which these standard residuals approximate a normal distribu
tion, i.e.

‘■i'i N(0, 1)

or their squares approximate a one degree o f  freedom chi-square distribution, i.e. 

2
V\ 'Xl

The reference values o f 0 for the mean and 1 for the standard deviation and the 
reference distributions o f  N (0 , 1) and x i 2 help us to see i f  the estimated standard resid
uals deviate significantly from their model expectations. This examination o f residuals 
will suggest whether we can proceed to use these items to make measurements, or whether 
we must do further work on the items and the testing situation to bring them into line 
with reasonable expectations. It will also indicate when particular persons have failed to 
respond to  the test in a plausible manner.

When a particular squared residual zv 2 becomes very large, we wonder if  something 
unexpected happened when person v took item i. O f course, a single unexpected response 
is less indicative o f  trouble than a string o f unexpectedly large values o f zv 2. Then the 
accumulated impact o f  these values taken over items for a person or over persons for an 
item is bound to  produce concern fo r the plausibility o f  the person’s measure or o f  the 
item ’s calibration and hence to  put into doubt the meaning o f that person’s measurement 
or o f  that item ’s calibration.

Since x„j takes only the tw o values o f “ 0”  and “ 1”  we can express these standard 
residuals in terms o f  the estimates b„ and d{.

From Equation 4.3.1 we have

z x = (x -  p )/[p (1  -  p )l 54 .

So when X = 0 then z0 =  (-p )/[p (1  -  p ) ]y/i-  — [p/(1 -

and X =  1 then Zf =  (1 -  p)/[p(1 -  p ) ]1/4 = +  [(1 -

N ow  since p =  exp (b -  d )/[1  +  exp(b -  d ) ]

then p/(1 -  p) =  exp (b -  d)

and (1 - p )/p  = exp (d -  b) .

So zo = -  exp [(b -  d )/2 ] z02 = e x p ( b - d )

and Z1 = + exp [(d -  b )/2 ] z12 = e x p ( d - b )

or in general z = (2x-1) e x p [(2 x -1 )(d -b )/2 ]

z2 = exp t(2x-1 )(d -b )]

[4.3.21

[4.3.3]
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Thus, exp (b - d) indicates the unexpectedness o f an incorrect response to a relatively 
easy item, while exp (d - b) indicates the unexpectedness o f a correct response to a rela
tively hard item. The values o f z02 = exp (b - d ) and z , 2 = exp (d -  b) can be ascertained 
for each x vi o f 0 or 1 and then accumulated over items to evaluate the plausibility o f  any 
person measure, or over persons to evaluate the plausibility o f  any item calibration.

To evaluate the unexpected responses in Table 4.3.1 we replace each instance o f an 
unexpected response by the difference between the ability measure for that person and 
the difficulty calibration for that item. For Person 11 on Item 4 the unexpected incorrect 
response associated with a person ability b,, o f -1 .2  and an item difficulty dj o f -3.9 leads 
to a difference (b,, -  dj) o f (-1 .2 ) -  (-3 .9 ) = +2.7.

This difference o f 2.7 for Person 11 on Item 4 is placed at the location o f that 
unexpected response in the matrix in Table 4.3.2 where we have also computed the 
differences for each instance o f an unexpected response given in Table 4.3.1.

TABLE 4.3.2

ABILITY - DIFFICULTY DIFFERENCES (b^-dj) 
FOR UNEXPECTED RESPONSES

ITEM

PERSON 4 5 7 6 8 12 14
PERSON
ABILITY

11 2.7 -  1.2

12 1.7 0.8 -  1.2

17 2.7 - 0 . 6

3 1.7 0.0

13 3.3 2.9 1.7 0.0

29 3.3 2.0 2.8 0.0

Item
Difficulty - 3 . 9 - 3 . 3  - 3 . 3  - 2 .9  

Since
"1 "  expected

- 2 . 0 1.7 2.8 

Since
" 0 "  expected

"0" unexpected 
entry is (b -  d)

"1 "  unexpected 
entry is (d -  b)

Unexpected incorrect answers have been recorded as (b -  d), but unexpected correct 
answers have been recorded as (d -  b). This is because when the response is incorrect, 
i.e., x = 0, then the index o f unexpectedness is exp (b -  d), but when the response is 
correct, i.e., x = 1, then the index is exp (d -  b).

The earmark o f unexpectedness in Table 4.3.2 is a positive difference, whether from 
(b - d) or (d -  b). Corresponding values for z2 can be looked up in Table 4.3.3 which 
gives either values o f zQ2 = exp (b -  d) for unexpected incorrect answers or values o f 
Zf 2 = exp (d - b) for unexpected correct answers. The entry Cx in Column 1 o f Table 
4.3.3 is either C0 = (b -  d) when x = 0 and the response is incorrect or C  ̂ = (d - b) when 
x = 1 and the response is correct.
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TABLE 4.3.3

M IS F IT  STATISTICS

1

DIFFERENCE 
BETWEEN 

PERSON ABILITY 
AND

ITEM DIFFICULTY

SQUARED
STANDARDIZED

RESIDUAL

IMPROBABILITY 
OF THE 

RESPONSE

RELATIVE 
EFFICIENCY 

OF THE 
OBSERVATION

NUMBER OF ITEMS 
NEEDED TO 
MAINTAIN 

EQUAL PRECISION

1000/1

-0 .6 .0 .4 1 .50 100 10

0.5 ,0.9 2 .33 90 11

1.0,1.2 3 .25 75 13

1.3,1.5 4 .20 65 15

1.6,1.7 5 .17 55 18

1.8,1.8 6 .14 50 20

1.9,2.0 7 .12 45 22

2.1 8 .11 40 25

2.2 9 .10 36 28

2.3 10 .09 33 30

2.4 11 .08 31 32

2.5 12 .08 28 36

2.6 13 .07 25 40

2.7 15 .06 23 43

2.8 16 .06 21 48

2.9 18 .05 20 50

3.0 20 .05 18 55

3.1 22 .04 16 61

3.2 25 .04 15 66

3.3 27 .04 14 73

3.4 30 .03 12 83

3.5 33 .03 11 91

3.6 37 .03 10 100

3.7 40 .02 9 106

3.8 45 .02 9 117

3.9 49 .02 8 129

4.0 55 .02 7 142

4.1 60 .02 6 156

4.2 67 .02 6 172

4.3 74 .01 5 189

4.4 81 .01 5 209

4.5 90 .01 4 230

4.6 99 .01 4 254

•F o r incorrect responses when x = 0 then CQ = (b -  d). For correct responses when x = 1 then C j -  (d b).
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FIT MEAN SQUARES (z 2 ) 
FOR UNEXPECTED RESPONSES

_________  TABLE 4.3.4 _______

ITEM PERSON
  •   MISFIT

PERSON 4 5 7 6 8 • 12 14 TOTAL
~~~~~ ~ “ “““ ■ ~~ —

■

11 15 ■ 15
■

12 6 2 ! 8
■
■

17 15 i 15
■
■
■

3 | 6 6
■
■

13 27 18 * 6 51
■
■

29 27 7 ! 17 51
■
■  ■■■■■'■ ■   -------
■

Item !
■

Misfit 15 15 54 24 9 I  12 17 146
Total ■

“ 1" expected ! "0" expected
"0" unexpected : "1 "  unexpected

We can locate the difference +2.7 for the (b - d) o f Person 11 on Item 4 in the first 
column o f Table 4.3.3 and read the corresponding z2 in Column 2 as 15. This value and 
all o f  the other values for the differences in Table 4.3.2 have been recorded in Table
4.3.4, which now contains all the z2 for every instance o f unexpectedness that we have 
observed for the six persons and seven items. In the margins o f Table 4.3.4 are the sums 
o f these z2 for each person and item. These sums indicate how unexpected the person or 
item pattern o f responses is.

In Column 3 o f Table 4.3.3 we show p = 1/(1 + z2 ), the improbability o f  the 
observed response. This provides a significance level for the null hypothesis o f  fit for any 
particular response. With our example o f a (b-d) o f  2.7 we have a significance level o f  .06 
against the null hypothesis that the response o f Person 11 to Item 4 is according to the 
model. The z2 themselves, are approximately X2 distributed with almost 1 degree o f 
freedom each. When they are accumulated over items for a person or over persons for an 
item, the resulting sums are approximately x2 distributed with ( L-1) degrees o f freedom 
for a person and (N-1) degrees o f freedom for an item.

In Column 4 o f Table 4.3.3 we show I = 400p (1-p), an index o f the relative 
efficiency with which an observation at that (b-d) provides information about the person 
and item interaction. This index is scaled by the factor 400 so that it will give the amount
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o f  information provided by the observation as a percentage o f the maximum information 
that one observation at (b - d ) = 0, i.e., right on target, could provide. The percent infor
mation in an observation can be used to judge the value o f  any particular item for mea
suring a person. This can be done by considering how much information would be lost by 
removing that item from the test. Thus, the I o f  23% for Person 11 on Item 4 gives us an 
indication o f  how much we gain by including Item 4 in the measurement o f Person 11 or 
o f  how much we would lose were we to remove Item 4.

The way the idea o f  information or efficiency enters into judging the value o f an 
observation is through its bearing on the precision o f  measurement. Measurement 
precision depends on the number o f items in the record and on the relevance o f each item 
to the particular person. We can simplify the evaluation o f each item ’s contribution to 
our knowledge o f  the person by calculating what percent o f  a best possible item the item 
in question contributes. That is what the values o f I in Column 4 provide.

When the item and person are close to one another, i.e., on target, then the item 
contributes more to the measure o f  the person than when the item and person are far 
apart. The greater the difference between item and person, the greater the number o f 
items needed to  obtain a measure o f  comparable precision and, as a result, the less 
efficient each item.

For example, it requires five 20% items to provide as much information about a 
person as could be provided by one 100% item. Thus, when (b-d) is about 3.0, it takes 
four to five times as many items to provide as much information as could be had from 
items that fell within one logit o f  the person, i.e., in the |b-d| <1 region.

In general, the test length necessary to maintain a specified level o f  measurement 
precision is inversely proportional to the relative efficiency o f the items used. The 
number L  o f  less efficient items necessary to match the precision o f  10 right-on-target 
items is given in the last column o f  Table 4.3.3.

To  facilitate the use o f  Table 4.3.3, it has been arranged in four sections:

Right Item efficiency is 45% or better, in the |b-d|<i
|b - d |<  2 region, 79% or better. Misfit is difficult to

on target detect.

Slightly Efficiency is poor, less than 45%. Misfit becomes

2 <  |b -d  | <  3 detectable when unexpected responses accumu

o ff  target late.

Rather Efficiency is very poor, less than 18%. Even
3 <  |b - d |<  4 single unexpected responses can indicate signifi

o f f  target cant response irregularities.

Extremely Efficiency is virtually nil, less than 7%. Unex

o f f  target
4 <  | b -d  | pected responses are always unacceptable.
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4.4 M ISF ITT IN G  PERSON RECORDS

Upon examining the rows o f Table 4.3.4 for high z2 values in person records, we 
find that the highest accumulated values are for Persons 13 and 29. These are the two 
persons whose test behavior is most questionable, and so we will examine their records in 
more detail.

co £2
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Table 4.4.1 displays the response vectors for Persons 13 and 29 over all 14 items. 
For each person we show their responses o f 0 or 1, the concomitant (b-d) o r (d -b )  
differences, depending upon whether the response is 0 for incorrect or 1 for correct, and 
the consequent value o f  z2 . The sums o f  the row o f  z2 for Person 13 and Person 29 are, 
coincidentally, 53. According to the model, these accumulated z2 ’s ought to follow  a 
chi-square distribution with 1 degree o f  freedom for each z2 minus the degree o f 
freedom necessary to estimate the person measure b .

Further, any sum o f  z2 ’s, when divided by its degrees o f freedom, should follow  a 
mean square or v = Z  z2 /f distribution which can conveniently be evaluated as the t — 
statistic:

v = Z z 2 / f  and f = L -  1 [4.4.1]

t=  [fin(v) + v -  1] [f/8 ] V4~ N (0 ,1 )  [4.4.2]

which has approximately a unit normal distribution.

For Person 13 we have

14

V13 = Z z213i/ ( 1 4 - 11 =  53 /13  = 4.1 
i

fo r which

%
t 13 = U n (v13) + v13-  1] [13/s ] = [1.4 + 4.1 - 1 ]  [1.3] = 5 .8 ,

which is a rather improbable value for t, i f  this person’s performance fits the model.

For Person 29 we observe the same results and the same t -  statistic. With such 
significant misfit it would seem reasonable to diagnose these two records as unsuitable 
data sources either for the measurement o f these two persons or for the calibration o f 
these items.

4 .5  M IS F IT T IN G  IT E M  RECORDS

We can also see in Table 4.3.4 that Items 7 and 6 show the greatest misfit among 
items, especially Item 7 with an accumulated z2 o f  54. In Table 4.5.1 we analyze the 
complete data vectors o f  these tw o items, showing for each person’s response o f 0 or 1 
the associated (b-d) or (d-b) with their respective z2 .

For Item 7

34

v ,  = Z z2 /(34-1 1 = 57 /33  = 1.7
7 V , f

V

for which

^  y2
t ? = [£n(v7 ) + v 7 - 1 ] [ 33/8 ] = [0.5 + 1 .7 -  1] [2.0] = 2 .4,

which is also a somewhat improbable value for t, i f  this item fits the model.
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I TABLE 4.5.1 I

C O M P L E T E  F IT  A N A L Y S IS  F O R
IT E M  7  A N D  6

ITEM  7 
(d = -  3.3)

ITEM  6 
(d = -  2.9)

PERSON ABILITY
b

RESPONSE X = 0 
x (b - d)

x =  1 
(d -b ) Z2

RESPONSE
X

x = 0 
(b -d )

x = 1 
(d -b ) z2

25 - 3 . 8 0 - 0 . 5 1 1 0.9 3

4 - 2 . 8 1 - 0 . 5 1 0 + 0.1 1

33 -  2.8 1 - 0 . 5 1 0 + 0.1 1

1 -  1.9 1 -  1.4 0 1 -  1.0 0

27 - 1 . 9 1 -  1.4 0 1 -  1.0 0

11 -  1.2 1 - 2 .1 0 1 -  1.7 0

12 -  1.2 1 - 2 .1 0 + 1.7 6

17 - 0 . 6 1 - 2 . 7 0 1 - 2 . 3 0

19 - 0 . 6 1 - 2 . 7 0 1 - 2 . 3 0

30 - 0 . 6 1 - 2 . 7 0 1 - 2 . 3 0

2 0.0 1 - 3 . 3 0 1 - 2 . 9 0

3 0.0 1 - 3 . 3 0 1 - 2 . 9 0

5 0.0 1 - 3 . 3 0 1 - 2 . 9 0

6 0.0 1 - 3 . 3 0 1 - 2 . 9 0

8 0.0 1 - 3 . 3 0 1 - 2 . 9 0

9 0.0 1 - 3 . 3 0 1 - 2 . 9 0

© 0.0 0 + 3 .3 27 + 2.9 18

16 0.0 1 - 3 . 3 0 1 - 2 . 9 0

26 0.0 1 - 3 . 3 0 1 - 2 . 9 0

28 0.0 1 - 3 . 3 0 1 - 2 . 9 0

0 0.0 0 + 3 .3 27 1 - 2 . 9 0

31 0.0 1 - 3 . 3 0 1 - 2 . 9 0

10 + 0.6 1 - 3 . 9 0 1 - 3 . 5 0

18 + 0.6 1 - 3 . 9 0 1 - 3 . 5 0

14 + 0.6 1 - 3 . 9 0 1 - 3 . 5 0

32 + 0.6 1 - 3 . 9 0 1 - 3 . 5 0

20 + 0.6 1 - 3 . 9 0 1 - 3 . 5 0

21 + 1.2 1 - 4 . 5 0 1 - 4 .1 0

22 + 1.2 1 - 4 . 5 0 1 - 4 .1 0

23 + 1.2 1 - 4 . 5 0 1 - 4 .1 0

34 + 1.2 1 - 4 . 5 0 1 - 4 .1 0

15 + 1.9 1 -  5.2 0 1 - 4 . 8 0

7 + 2.8 1 - 6 .1 0 1 - 5 . 7 0

24 + 2.8 1 - 6 .1 0 1 - 5 . 7 0

SUM OF SQUARES 57 29
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For Item  6
34

v_ = S z 2 / (34-1) = 29/33 = 0.9 
° v V6

fo r which

Vi
t6 = U n<v6 ) + v 6 -  1] [ 33/a] = (-0.1+0.9-11(2.0] = 0.4,

obviously not a significant misfit.

We find that the mean square for Item 7 is significant but that the mean square for 
Item 6 is not. However, when we examine Table 4.5.1 again, we see that it is the two 
significantly misfitting persons 13 and 29 who contribute most to the misfit values for 
these two items. Now  we have the opportunity o f improving the fit o f  the data to the 
model, either by removing Item 7 and observing what happens then or by removing 
Persons 13 and 29.

4 .6  B R IEF  S U M M A R Y  O F TH E  A N A LY S IS  OF F IT  

For any response o f  Person v to Item i 

xv j = 0 if  “ incorrect”  and 

xVj = 1 i f  “ correct.”

The standard mean square residual becomes

z„j = exp (b-d), for xpi = 0 , incorrect, and 

Zyj = exp (d-b), for x ■ = 1, correct.

T o  evaluate the overall fit o f  person v, we sum his vector o f  standard square residuals
2

(z •) over the test o f  i = 1 ,L items, and calculate his person misfit statistic as

L

V „ = 2 z 2 /(L -  1) ~ f l- , , ° o [4.6.1]

with t„=  (Cn(vj,) + v „ -  1] [(L -  1)/8]54~  N(0,1) [4.6.2]

T o  evaluate the fit o f  Item i, we sum the item ’s vector o f standard square residuals 
( Zy j) over the sample o f  v = 1 ,N persons, and calculate the item misfit statistic as
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t, =  [C n (V j) +  v, -  1] [(N  -  1 )/8]1/1 ~ N (0 ,1 )

BEST TEST DESIGN 

[4 .6 .4 ]

4.7 COMPUTER ANALYSIS OF FIT

In the analysis o f fit done by hand we saw that certain person records and items had 
residuals evaluated as significant. Having shown the procedures for the analysis o f  fit by 
hand we turn to computer analysis and return to our calibration o f the KCT with 18 
items and 34 persons. In the calibration o f  the KCT we see from the fit mean square, 
given in the left panel o f  Table 4.7.1, that Item 7 produces the greatest misfit with a value 
o f 1.98 not far from the 1.7 found in our hand computation. From our analysis o f  person 
misfit we know that Persons 13 and 29 greatly contributed to this misfit in Item 7. 
Without this information at the time o f our calibration, however, we might have 
considered the possible deletion o f Item 7 because o f its high fit mean square. With this 
much lack o f  fit for Item 7 we might have chosen to recalibrate with Item 7 removed. 
This has been done and the results are given in the middle panel o f  Table 4.7.1. Now we 
see that Item 6 has acquired a misfit o f 2.73 even though previously when we calibrated 
all 14 items, Item 6 had a fit mean square o f only 0.90. This change in the status o f Item 
6 is troublesome. We do not seem to be focusing in on a set o f suitable items. 
Nevertheless we go one step further and recalibrate once more, this time removing both 
Item 7 and Item 6. The results are in the right panel o f  Table 4.7.1. Alas, now we find 
that Item 8 has become a misfit. These attempts to find a properly fitting set o f items 
appear doomed.

J TABLE 4.7.1 |_

ANALYSIS OF FIT 
WITH UCON : 

ITEM DELETIONS

ITEMS IN FIT ORDER ITEMS IN  F IT ORDER ITEMS IN FIT ORDER

MN

16 6

17 6

15 6

9 4

4 3

13 5

8 4

5 3

11 5

10 4

6 3

12 5

14 6

71 4

4.56

4.56

4.56

-  3.22

-  4.19 

1.86

-  2.24

-  3.65 

0.76

-  1.50

-  3.22 

2.14 

321

-  3.65

A ll Persons and A ll Items 

L = 14 N = 34

0.13 

0.13 

0.13 

0.23 

0.37 

0.40 

0.44 

0.53 

0.77 

0.79 

0.90 

0.97 

1.33 

1 98

16

17

15

9

4

13

5 

11

14 

1 2  

10

□

4.45

4.45

4.45

-  3.75

-  4.75 

1.77

-  4.20 

0.65 

3.11 

2.04

-  1.81 

-  2.66 

-  3.75

Deleting Item 7 

L = 13 N = 34

0.13

0.13

0.13

0.22

0.40

0.42

0.54

0.68

0.74

0.83

0.88

1.03

2.73

15

9

4

13

5 

11

14 

10 

12

□

4.29

4.29

4.29

-  4.30

-  5.38 

1.61

-  4.79 

0.43 

2.96

-  2.19 

1.89

I -3 .1 1

Deleting Items 7 and 6 

L = 12 N = 34

0.13 

0.13 

0.13 

0.18 

0.35 

0.44 

0.64 

0.67 

0.77 

0.78 

0.82 

1 29



THE ANALYSIS OF F IT 81

Suppose, instead, we decide, subsequent to our first calibration o f the KCT items, to 
evaluate person fit. The computer analysis for person misfit, shown in Table 4.7.2, also 
identifies Person 13 and 29 as producing the highest fit statistics. So let us recalibrate all 
14 o f  the items but with these tw o persons removed. Now, in Table 4.7.3, we see that the 
f it  mean squares fo r all o f  the items are small enough to satisfy us. Removing the two 
unsuitable person records has brought all o f  the items into agreement.

I TABLE 4.7.2 I

ANALYSIS OF PERSON FIT 
WITH UCON

UCON UCON
PERSON SCORE AB ILITY MISFIT

r b V

25 2 - 4 . 4 0.5
4 3 - 3 . 7 0.4

33 3 - 3 . 7 0.9
1 4 - 3 . 1 0.3

27 4 - 3 . 1 0.3
11 5 - 2 . 3 0 .8
12 5 -  2.3 0 .5
17 6 -  1.4 1.0
19 6 -  1.4 0 .2
3 0 6 -  1.4 0 .2

2 7 - 0 . 3 0.1

3 7 - 0 . 3 1.4

5 7 - 0 . 3 0.1

6 7 -  0.3 0.1
8 7 -  0.3 0.1
9 7 - 0 . 3 0.1

© 7 - 0 . 3 I 5 .7 I (Hand PROX = 4.1)

16 7 - 0 . 3 0.6

26 7 - 0 . 3 0.1

28 7 - 0 . 3 0.6

@ 7 - 0 . 3 | 6 .6  | (Hand PROX = 4.1)

31 7 - 0 . 3 0.1

10 8 + 1.0 0.2

14 8 + 1.0 0.2

18 8 + 1.0 0.4

20 8 + 1.0 0.4

32 8 + 1.0 0.2

21 9 + 2.0 0.2

22 9 + 2.0 0.2

23 9 + 2.0 0.7

34 9 + 2.0 0.7

15 10 + 3.0 0.2

7 11 + 3.9 0.4

24 11 + 3.9 0 .9

Mean 0.7

Standard Deviation 1.6
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TA B LE 4.7 .3

A N A LY S IS  O F  F IT  
W IT H  UCON : 

PERSON D E L E T IO N S

SEQ
NUM

ITEM
NAME

ITEM
DIFF

FIT
MN

7 4 -  5.70 0.10

16 6 5.27 0.13

17 6 5.27 0.13

15 6 5.27 0.13

8 4 -  2.87 0.17

9 4 -  3.73 0.21

6 3 - 4 . 2 4 0.34

13 5 2.34 0.38

4 3 - 4 . 8 4 0.40

14 6 4.43 0.55

5 3 - 4 . 2 4 0.64

11 5 1.51 0.70

12 5 3.01 0.99

10 4 -  1.48 1.03

Deleting Persons 13 and 29 

L =  14 N = 3 2

It seems clear that it was the test records o f  these two unpredictable persons which 
caused Item 7 and then Item 6 to seem to misfit. Thus, we learn that successive deletions 
o f items without analyzing person fit can lead us to believe that items are misfitting 
when, in fact, it is the response records o f a few irregular persons which are causing the 
trouble. While the very small sample size used in our example exaggerates the impact o f 
the two irregular persons, even large samples do not completely obliterate the 
contaminating influence o f irregular person records, and in a large sample such flawed 
records may be harder to spot and so remain unknown unless explicit tests o f person fit 
are routinely made.



5 CONSTRUCTING A  VARIABLE

5.1 G E N E R A L IZ IN G  TH E D E F IN IT IO N  OF A  V A R IA B LE

In Chapters 2, 3 and 4 we have shown how to expose and evaluate the observed rela
tionship between intended measuring instruments, the test items, and the objects they are 
intended to measure, the persons. This prepares us for the present chapter which is con
cerned with how to  define a variable.

With a workable calibration procedure and a method for the evaluation o f fit, it 
becomes practical to turn our attention to a far more important activity, namely a critical 
examination o f  the calibrated items to  see what it is that they imply about the possibility 
o f  a variable o f  some useful generality. We want to find out whether our calibrated items 
spread out in a way that shows a coherent and meaningful direction. I f  they are not 
spread out at all, then all we have achieved is to define a point, perhaps on some variable, 
perhaps not. But the variable itself, whatever it may be remains obscure.

Our intention now is to show how calibrated items can be used to define a variable 
and how to find out whether the resulting operational definition o f the variable makes 
sense. We will begin by examining the degree to which the spread o f item difficulties 
substantially exceeds the standard error o f  their estimates, that is, the degree to which the 
data has given a direction to the variable. For example, suppose we consider the estimates 
o f  tw o item difficulties with their respective standard errors. In order for these two items 
to define a line between them the difference between their estimates must be substan
tially greater than the standard error o f  this difference! Only i f  the two estimates are well 
separated by several such standard errors will we begin to see a line between the two 
items suggesting a direction fo r the variable which they define.

If, however, when we compare these tw o estimates by a standard error or two, they 
overlap substantially, then we cannot assume that the two values d iffer and as a result no 
direction fo r a variable has been defined. Instead the items define a point without direction.

Figure 5.1.1 illustrates this. In Example 1 we have Items A  and B separated from 
each other by several standard errors. Even with two items we begin to see a direction to 
the variable at least as defined by these two items. In the second example, however, we 
find the tw o items so close to each other that, considering their standard errors, they are 
not separable. We have found a point. But no direction has been established and so no 
variable has as yet been implied.

As an example o f  variable definition, we will continue our study o f the KCT data to 
see how well the K C T  items succeed in defining a variable and just what that variable 

seems to  be.

5.2 D E F IN IN G  TH E KCT V A R IA B LE

The items o f  the KCT form a tapping series that grows in length by increasing the 
number o f  taps and grows in com plexity by the distance between adjacent taps and the 
number o f  reverses in direction o f  movement.

83
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Figure 5.2.1 lists the 18 items comprising the original KCT. Each item is described 
by its numerical name, tapping series and tapping order pattern.

Table 5.2.1 focuses on those 14 KCT items that were calibrated in Chapters 2 and 3. 
Items 1, 2 and 3 are not included because they were too easy for the 34 persons in that 
sample and Item 18 is not included because it was too hard. Table 5.2.1 gives the item 
names, tapping series, item difficulties and their standard errors. The difficulty range o f 
these 14 items is from -4.2 logits to +4.6 logits.

The item difficulties in Table 5.2.1 make it possible to be quantitatively explicit in 
our definition o f the KCT variable by placing the 14 items at their calibrated positions 
along the line o f the variable. This is done in Figure 5.2.2 As several items have either the 
same difficulty or are so close in terms o f their standard errors that they can hardly be 
differentiated, we have shown only the eight items that best mark out the extent o f the 
KCT variable. The semicircles in Column 2 o f Figure 5.2.2 show an allowance o f one 
standard error around each estimated difficulty. We can see that Items 4, 6, 8 and 10 
define the easy end o f the variable. Then there is a rather wide undefined gap in the 
middle. Finally, Items 11, 12, 14 and 16 define the hard end. The tapping patterns in 
Column 3 show what movement along the variable means in terms o f the increasing 
number o f taps and pattern complexity. Column 4 gives the distribution along this KCT 
variable o f the 34 persons who participated in the initial calibration.
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I TAB LE 5.2.1 I
CALIBRATION OF THE KCT VARIABLE  
WITH ITEMS IN ORDER OF DIFFICULTY

ITE M TAPPING ITEM STA N D A R D
NAM E SERIES C A LIB R A TIO N ERROR

4 I C
O I - 4 .2 0.8

5 2 - 1 - 4 -3 .6 0.7
7

C
NICOII - 3 .6 0.7

6 IICO -3 .2 0.6
9 IC

NI00I - 3 .2 0.6
8 I I ro I C

O -2 .2 0.6
10 ICOIIC

N -1 .5 0.5
11 1 - 3 - 1 - 2 - 4 0.8 0.5
13 IC

NI00IIT— 1.9 0.5
12 I 00 I M I -e

. I 00 2.1 0.6
14 I I N

O I 00 I JN I 1 3.2 0.7
15 IIICMICOI 3 4 .6 1.1
16 1 - 4 - 2 - 3 - 1  - 4 4.6 1.1
17 I O

N I 00 I I N
O 4 4.6 1.1

Mean 0.0

Standard Deviation 3.4

UCON Calibration from Table 3.4.1

We see that most o f  the persons in this sample fall in the center o f  the test. But that 
is just where we have a large gap in test items. We have discovered something important 
and useful to  us, namely that our test instrument is weakest at the mode o f our sample. It 
becomes clear that, i f  we want to discriminate among the majority o f  persons found in 
the middle range o f  the KCT, then we must construct some additional middle range items 
which will be more appropriate to middle range abilities.

5.3  IN T E N S IF Y IN G  A N D  E X TE N D IN G  TH E KCT V A R IA B LE

To  improve measurement along the KCT variable, especially in the middle range, 
further item development is required. We need items to fill the gap in the original defini
tion o f  the variable and we need easier and harder test items in order to extend the vari
able’s range. However, since all o f  our sample passed the three easiest items, extending the 
KCT variable down to easier levels may prove difficult. We would have to locate some 
much less able persons than were found among our original 34 in order to calibrate easier 
items. On the other hand, only one hard item was failed by all persons in our KCT sample. 
It might be fruitful to try to  add some items which are more difficult than Items 15, 16 
and 17, under the assumption that with a sample o f  more able persons we could obtain 
useful calibrations o f  these more d ifficu lt items and thus extend the KCT variable upward.
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With these considerations in mind, further development o f the KCT variable was 
undertaken. A ll 18 items from  the original KCT were retained, and ten new items were 
added. The original KCT was from Form II o f  the Arthur Point Scale. We examined Form 
I and found three items not used in Form II (Arthur, 1943). To  these three items we 
added seven more. Five items were designed to fill the middle range gap, four items were 
designed to extend the K C T  variable upward and one o f  the Form I items was expected 
to  fit  near old Items 5, 6 and 7. The tapping series for these additional items and their 
intended locations on the KCT variable are shown in Figures 5.3.1 and 5.3.2.

Figure 5.3.1 shows the one item from Form I and the five new items designed to fill 
the gap between the old K C T  Items 10 and 11. The four items designed to extend the 
K C T in the region o f  Item 18 are shown in Figure 5.3.2. The result is a new test form, 
KCTB, which contains all 18 old items and, in addition, 10 new items. This new instru
ment o f  28 items was administered to a sample o f  101 persons and Items 2 through 25 
were calibrated. Item 1 was still too  easy and Items 26, 27 and 28 were still too hard to 
be calibrated.

Column 6 in Table 5.3.1 gives these new KCTB calibrations. The rest o f  Table 5.3.1 
shows the relationship between the old KCT and the new KCTB calibrations. Column 1 
names the 14 old K C T  items. Column 2 shows their original calibrations from Table
3.4.4. Notice in Column 6 that we have now obtained calibrations on old KCT Items 2, 3 
and 18, three o f  the original items which remained uncalibrated in our first study with 34 
persons.

Column 3 o f  Table 5.3.1 applies the necessary adjustment to bring the old KCT cali
brations into line with their new calibrations on the new KCTB. This is done by shifting 
the calibrations in Column 2 by the constant 0.4 which is the mean position o f  the old 
KC T  items in the new KCTB calibrations. This causes Column 3 and Column 5 to have 
the same mean o f  0.4.

In Table 5.3.1 we see that the new KCTB Items 12 through 16 fall more or less 
where expected, i f  somewhat on the easy side. KCTB Item 25 along with KCT Item 18 
extend the reach o f  the K C T  variable 2 logits further upwards, but we have found no one 
who succeeds on KCTB Items 26, 27 and 28.

Figure 5.3.3 compares the difficulties o f  those items which appeared in both the 
K C T  and KCTB calibrations. Each o f  the 14 items is located in Figure 5.3.3 by its pair o f 
d ifficu lty estimates. I f  the items fit  the measurement model, then we expect these inde
pendent estimates o f  their difficulties to be statistically equivalent.

Thus the extent to which the 14 points fall along the identity line tests the invar
iance o f  these 14 items difficulties. As Figure 5.3.3 shows, the 14 points all lie well within 
95% quality control lines. This is the pattern that the model says they must approximate 
in order to be useful as instruments o f measurement.
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Items 1 • 6 Items 1 - 6
Old KCT become New KCTB

Items 7 - 9 Items 8 - 1 0
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Old K C T Items 1 2 -1 6  become New KCTB Items 1 8 -2 2
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J TABLE 5.3.1 {
CALIBRATION OF KCTB

1 62

Old KCT

3 4 5
New KCTB

Item KCT Calibration Item KCTB Calibration
Name Unadjusted Adjusted * Name Old Items All Items

2 2 -6 .0
3 3 -5 .6
4 -4 .2 -3 .8 4 -3 .8 -3 .8
5 -3 .6 -3 .2 5 -2 .3 -2 .3
6 -3 .2 -2 .8 6 -2 .5 -2 .5

7 -4 .0
7 -3 .6 -3 .2 8 -2 .3 -2 .3
8 -2 .2 -1 .8 9 -1 .8 -1 .8
9 -3 .2 -2 .8 10 -1 .8 -1 .8

10 -1 .5 -1 .1 11 -0 .8 -0 .8
12 0.1
13 -0 .6
14 -0 .3
15 -1 .3
16 -0 .5

11 0.8 1.2 17 2.2 2.2
12 2.1 2.5 18 1.6 1.6
13 1.9 2.3 19 2.2 2.2
14 3.2 3.6 20 3.1 3.1
15 4.6 5.0 21 3.6 -3 .6
16 4.6 5.0 22 3.6 3.6
17 4.6 5.0 23 4.7 4.7
18 24 6.5

25 6.0

Mean 0.0 0.4 0.4 0.0

Standard
Deviation 3.4 3.4 2.8 3.4

KCT: L =  14 N = 34 KCTB: L = 24 N = 101

'"The Chapter 3 calibrations o f the 14 old KCT items in Column 2 have been shifted along the variable 
by 0.4 logits so that the mean o f  these Chapter 3 calibrations equals their mean calibration in the new 
KCTB calibrations. This new mean was calculated from Column 5.
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J FIG UR E 5.3.3 1
PLOT OF ITEM CALIBRATIONS, 

KCT VERSUS KCTB

95%

KCTB ITE M  C A LIB R A TIO N

Items identified by Old KCT Names
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FIG URE 5.4.1

HOW TO FORM 68% AND 95% 
QUALITY CONTROL LINES

95%
CALIBRATION i Boundary

IDENTITY
LINE

(d

5.4 CONTROL LINES FOR ID E N T IT Y  PLOTS

Figure 5.3.3 contains a pair o f  95% quality control lines which help us see the extent 
to which the 14 item points conform to our model expectation o f item difficulty invar
iance. In plots which are used to evaluate the invariance o f item difficulty and hence the 
quality o f items, these 95% lines make it easy to see how satisfactorily the item points in 
the plot follow  the expected identity line.
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Figure 5.4.1 shows how such lines are drawn. Each plot compares a series o f paired 
item calibrations. Each item has a difficulty dj and a standard error Sj from each o f two 
independent calibrations in which the item appeared. Thus for each item i we have 
( d j j , Sjj) and (d i2, si2 ). Since each pair o f  calibrations applies to one item, we expect 
the tw o difficulties d ^  and di2, after a single translation necessary to establish an origin 
common to both sets o f  items, to estimate the same difficulty 8 j. We also expect the 
error o f  these estimates to be estimated by Sjj and sj2.

This gives us a statistic for testing the extent to which the two dj’s estimate the same 
8 j, namely

tii2 = <dil ~ di2)/(Si? +Sjl)Va ~N(0,1) [5.4.1]

in which (sjf + si2 )1/s estimates the expected standard error o f  the difference between 
the tw o independent estimates d(1 and di2 o f the one parameter 8j. We can introduce 
this test fo r the quality o f  each item point into the p lot by drawing quality control 
boundaries at about tw o o f  these standard errors away from the identity line on each 
side.

Since the standard unit o f  difference error parallel to either axis o f  the plot is

the unit o f  error perpendicular to the 45 degree identity line must be 

[(s,? + sJ)/2)* .

Tw o o f  these error units perpendicular to the identity line in each direction yields a pair 
o f  approximately 95% quality control lines. The perpendicular distance 2 between 
these quality control lines and the identity line thus becomes

D ji 2 = 2[(s ,i + Sj2 )/2 ] A . [5.4.2]

When Sjj and si2 are sufficiently similar so that the mean o f their squares is approxi
mately the same as the square o f  their mean, that is

(sii + sii>/2 ~ Ksi2 + si2)/2]2 .

then the distance D il2  from  the identity line to a 95% confidence boundary can be 
approximated by

Dj12 = 2[(Sji + Sjf )/2 ] A

— 2 [(Sji +Sj2)/2] =$1! + si2 .

Thus fo r  the i = 1, K  items for which paired calibrations are available the distances 
(Sji + si2) perpendicular to the identity line drawn through each item point can be used 
to locate 95% confidence lines for evaluating the overall stability o f  the item calibrations 
shown in the plot.
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The usual method for equating tests is based on the equation o f equal-percentile 
scores. This procedure requires a sample o f persons large enough and broadly enough 
distributed to assure an adequate definition o f each score-to-percentile connection. With 
Rasch measurement a more economical and better controlled method for building an 
item bank becomes possible. Links o f 10 to 20 common items can be embedded in pairs 
o f otherwise different tests. Each test can then be administered to its own separate sam
ple o f persons. No person need take more than one test. But all items in all tests can be 
subsequently connected through the network o f common item links.

To begin with a simple example, a traditional approach to equating two 60-item 
tests A  and B might be to give them simultaneously to a sample o f at least 1200 persons 
as depicted in the upper part o f  Figure 5.5.1. This is a likely plan since a detailed defini
tion o f score percentiles is necessary for successful percentile equating. Each person must 
take both tests, 120 items.

In contrast, a Rasch approach could do the same job  with each person taking only 
one test o f 60 items. To accomplish this a third 60-item test C is made up o f 30 items 
from each o f  the original tests A  and B. Then each o f these three tests is given to a sample 
o f 400 persons as depicted in the lower part o f  Figure 5.5.1. Now each person takes only 
one test, but all 120 items are calibrated together through the two 30-item links connect
ing the three tests. The testing burden on each person is one-half o f  that required by the 
equal-percentile plan.

In Rasch equating the separate calibrations o f each test produce a pair o f indepen
dent item difficulties for each linking item. According to the model, the estimates in each 
pair are statistically equivalent except for a single constant o f translation common to all 
pairs in the link. I f  two tests, A  and B, are joined by a common link o f K  items, each test 
is given to its own sample o f N persons, and diA and diB are the estimated difficulties o f 
item i in each test with standard errors o f about 2.5/N%, then the single constant neces
sary to translate all item difficulties in the calibration o f Test B onto the scale o f Test A  is

Ga b = ?  W,A - d , B)/K  [5.5.1]

with a standard error o f about 3.5/(NK) ,/4 logits.

The quality o f  this link can be evaluated by the fit statistic

£  (diA ~ diB -  Ga b )2 (N /1 2 )[K /(K -  1)] ~ X k  [5.5.2]
i

which according to the model should be approximately chi-square with K  degrees o f 
freedom.

The individual fit o f  any item in the link can be evaluated by

(diA - d iB- G AB)2 (N /1 2 ) [K /(K -1 )]  ~ X i  [5.5.3]

which according to the model should be approximately chi-square with one degree o f 
freedom.

5.5. CONNECTING TWO TESTS
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Traditional
Equal-Percentile

Equating

Rasch 
Common Item 

Equating

1 F IG U R E 5.5.1 |

TRADITIO NAL AND RASCH 
EQUATING DESIGNS

Items
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In using these chi-square statistics to judge link quality we must not forget how they 
are affected by sample size. When N exceeds 500 these chi-squares can detect link flaws 
too small to make any tangible difference in GA B. When calibration samples are large the 
root mean square misfit is more useful. This statistic can be used to estimate the logit 
increase in calibration error caused by link flaws.

In deciding how to act on evaluations o f link fit, we must also keep in mind that 
random uncertainty in item difficulty o f less than .3 logits has no practical bearing on 
person measurement (Wright and Douglas, 1975a, 35-39). Because o f the way sample size 
enters into the calculation o f item difficulty and hence into the evaluation o f link quality, 
we can deduce that samples o f 200 persons and links o f 10 good items will always be 
more than enough to supervise link validity at better than .3 logits. In practice we have 
found that we can construct useful item banks with sample units as small as 100 persons.

5.6 B UILD IN G  ITEM  BANKS

As we establish and extend the definition o f a variable by the addition o f new items 
we have the beginning o f an item bank. With careful planning we can introduce additional 
items systematically and in this way build up a bank o f calibrated items useful for an in
creasing variety o f  measurement applications. As the number o f items increases, the prob
lems o f managing such a bank multiply. There is not only the question o f how best to 
select and combine items and persons, but o f how to manage effectively the consequent 
collection o f calibrated items. Rasch measurement provides a specific well-defined ap
proach to managing item banking.

The basic structure necessary to calibrate many items onto a single variable is the 
common item link in which one set o f linking test items is shared by and so connects 
together two otherwise different tests. An easy and a hard test could be linked by a com
mon set o f items as pictured in Figure 5.6.1. In this example the linking items are the 
“ hard”  items in the EASY test but the “ easy”  items in the HARD test.
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With two or more test links we can build a chain o f  the kind shown in Figure 5.6.2. 
The representation in Figure 5.6.2, however, is awkward. The linking structure can be 
conveyed equally well by the simpler scheme in Figure 5.6.3 which emphasizes the links 
and facilitates diagramming more complicated structures.

As the number and difficu lty range o f  the items introduced into an item bank grows 
beyond the test-taking capacity o f  any one person, the chain o f items must be parceled 
into test forms o f  manageable length and difficulty range. In Figure 5.6.3 each circle 
indicates a test sufficiently narrow in range o f  item difficulties to be manageable by a 
suitably chosen sample o f persons. Each line connecting a circle represents a link o f 
common items shared by the tw o tests it joins. Tests increase in difficulty horizontally 
along the variable and are comparable in difficu lty vertically.

____________ | FIG U R E 5.6.2 |____________

----------------------------------------  A CHAIN WITH TWO LINKS ----------------------------

Link Link
AB BC

Easy —--------------------------------------------------------------------------------------------------------------------   Hard

Variable

I F IG U R E  5.6.3 1

A CHAIN OF TWO LINKS 
(Simplified)

Easy
Variable

Hard
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Three links can be constructed to form a loop as in Figure 5.6.4. This loop is an 
important linking structure because it yields an additional test o f link coherence. I f  the 
three links in a loop are consistent, then the sum o f their three link translations should 
estimate zero.

®AB + ®BC + ®CA — 0

Notice that GAB means the shift from Test A  to Test B as we go around the loop clock
wise so that Gc a  means the shift from Test C back to Test A. Estimating zero “ statis
tically”  means that the sum o f these shifts should come to within a standard error or two 
o f zero. The standard error o f  the sum GAB + GBC + GCA will be about

3.5 (1 /N a b Ka b  + 1 /N b c Kb c  + 1 /N c a ^ c a ^ 1

in which the N ’s are the calibration sample sizes and the K ’s are the number o f items in 
each link.
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With four or more tests we can construct a network o f loops. For example, a se
quence o f  increasingly difficult tests could be commonly calibrated by a series o f con
necting links as shown in Figure 5.6.5. These ten tests mark out seven levels o f  difficulty 
from  Tests A  through D. This network could connect ten 60-item tests by means o f 
nineteen 10-item links to cover 600 -  190 = 410 items. I f  200 persons were used for 
each test, then 410 items could be evaluated for possible calibration together from the 
responses o f  only 2,000 persons. Even 1,000 persons, at 100 per test, would provide a 
substantial purchase on the possibilities for building an item bank out o f the best o f 
the 410 items.

The building blocks o f  a test network are the loops o f three tests each. I f  a loop 
fits the Rasch model, then its three translations should sum to within a standard error or 
tw o o f  zero. Thus the success o f the network at linking item calibrations can be evaluated 
from  the magnitudes and directions o f  these loop sums. Shaky regions can be identified 
and steps taken to  avoid or improve them.
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The implementation o f test networks can lead to banks o f commonly calibrated 
items far larger in number and far more dispersed in difficulty than any single person 
can handle. The resulting banks, because o f the calibration o f their items onto one 
common variable, can provide the item resources for a prolific family o f useful tests, long 
or short, easy or hard, widely spaced in item difficulty or narrowly focused, all auto
matically equated in the measures they imply.

These methods for building item banks can be applied to existing tests, if they have 
been carefully constructed. Suppose we have two non-overlapping, sequential series o f tests 
A j . A 2. A 3, A 4 and B j . B 2. B 3, B4 which we want to equate by Rasch methods. A ll eight 
tests can be equated by connecting them with a new series o f intermediate tests X, Y  and 
Z made up entirely from items common to both series as shown in Figure 5.6.6. Were the 
A  and B series o f tests in Figure 5.6.6 still in the planning stage, they could also be linked 
directly by embedding common items in each test according to the pattern shown in 
Figure 5.6.7.

Since coherence is a vital concern in the building o f an item bank, we are especially 
interested in linking structures which maximize statistical control over the joint coher
ence o f all item calibrations. Networks which maximize the number o f links among test 
forms so that each form is linked to as many other forms as possible do this. In the 
extreme, this leads to a web in which every individual item in a form links that form to 
another different form.

_________________________ | FIG URE 5.6.6 |_________________________

CONNECTING TWO NON-OVERLAPPING 
------------------ TEST SERIES BY INTERMEDIATE LINKING TESTS ------------------

Test Series A

Easy ----------------------------------------------------------------------------------------------------------------- *. Hard

Variable
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_____________ | F IG U R E 5.6.7 |_____________

CONNECTING TWO TEST SERIES BY 
EMBEDDING COMMON ITEMS

Test Series A

E a s y ---------------------------------------- — — ---------------------------------------------------------------► Hard
Variable

T o  illustrate we take a very small banking problem where we use 10 items per form 
in a web in which each o f  these 10 items also appears in one o f  10 other different forms. 
The complete set o f  10 + 1 = 11 forms constitutes a web woven out o f 11 x  10/2 = 5 5  
individual linking items. Every one o f  the 11 forms is woven to every other form. The 
pattern looks like the picture in Figure 5.6.8.

We will call this bank building design a “ complete”  web because every form is woven 
to  every other form. In the design o f  useful webs, however, there are three constraints 
which affect their construction. These are the total number o f  items we want to calibrate 
into the bank, the maximum number o f  items which we can combine into a single form 
and the extent to  which the bank we have in mind reaches out in difficulty beyond the 
capacity o f  any one person.

The testing situation and the capacity o f  the persons taking the test forms will limit 
the number o f  items we can put into a single form. It will usually happen, however, that 
we want to calibrate many more items than we can use up in a complete web like the 
one illustrated in Figure 5.6.8. There are two possibilities for including extra items. The 
simplest, but not the best statistically, is to design a “ nuclear”  complete web which uses 
up some portion o f the items we can include in a single form. We then fill out the re
quired form length with additional “ tag”  items. These tag items are calibrated into the 
bank along with the link items in their form. Unlike the link items, however, which always
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  FIGURE 5.6.8 ______

A COMPLETE WEB 
FOR PARALLEL FORMS

Forms

A B C

Forms 

D E F G H I J K

A \  1 2 3 4 5 6 7 8 9 10
B ^ V 1 1  12 13 14 15 16 17 18 19
C \ 2 0 21 22 23 24 25 26 27
D 28 29 30 31 32 33 34
E \ 3 5  36 37 38 39 40
F \ 4 1 42 43 44 45
G 46 47 48 49
H 50 51 52
1 11 Forms 53 54
J 10 Items per form 55
K (11x10)/2 = 55 Items

The number entered in each cell is 
the identification of the item linking 
the two forms which define the posi
tion of that cell.

appear in two forms, the tag items appear in only one form and so give no help with
linking forms together into one commonly calibrated bank.

Another possibility, which is better statistically, is to increase the number o f forms 
used while keeping the items per form fixed at the required limit. This opens the web in a 
systematic way but still uses every item twice so that the paired data on that item can be 
used to evaluate the coherence o f bank calibrations. Figure 5.6.9 shows an “ incomplete”  
web for a 21 form design with 10 items per form, as in Figure 5.6.8, but with nearly
twice as many items used in the incomplete web.

The incomplete web in Figure 5.6.9 is suitable for linking a set o f  parallel test forms. 
When the reach o f the bank goes beyond the capacity o f  any one person, however, neither 
o f the webs in Figures 5.6.8 and 5.6.9 will suffice, because we will be unable to combine 
items from the easy and hard ends o f the bank into the same forms. The triangle o f link
ing items in the upper right comers o f Figures 5.6.8 and 5.6.9 will not be functional and 
will have to be deleted. In order to maintain the balance o f  linking along the variable we 
will have to do something at each end o f the web to fill out the easiest and hardest forms 
so that the extremes are as tightly linked as the center. Figure 5.6.10 shows how this can 
be done systematically for a set o f  21 sequential forms. We still have 10 items per form 
but now only adjacent forms are linked together. There are no common items connecting 
the easiest forms directly with the hardest forms. But over the range o f the variable the 
forms near to one another in difficulty level are woven together with the maximum num
ber o f item links.
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Each linking item in the webs shown in Figures 5.6.8, 5.6.9 and 5.6.10 could in fact 
refer to  a cluster o f  two or more items which appear together in each o f the two forms 
they link. Sometimes the design or printing format o f items forces them into clusters. 
This happens typically in reading comprehension tests where clusters o f  items are attached 
to  reading passages. It also occurs naturally on math and information retrieval tests where 
clusters o f  items refer to common graphs. Clustering, o f  course, increases the item length 
o f  each form by a factor equal to the cluster size.

The statistical analysis o f  a bank-building web is simple, i f  the web is complete as 
in Figure 5.6.8. The row means o f  the corresponding matrix o f  form links are least square 
estimates o f  the form  difficulties. We need only be careful about signs. I f  the web cell 
entry Gjk estimates the difference in difficulty (5j -  5k) between forms j and k and the 
form difficulties are centered at zero so that 6. = 0, then

M
G j .=  2  Gjk/M

The row means o f  the link matrix calibrate the forms onto one common variable. 
Once form  difficulties are obtained they need only be added to the item difficulties 
within forms to  bring all items onto the common variable shared by the forms.

FORMS

F IG UR E 5.6.9

AN INCOMPLETE WEB 
FOR PARALLEL FORMS

A B C D E F G H

FORMS  

I J K L M N O P Q R S T U

A 
B 
C 
D 
E 
F 
G 
H 
I
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U

Formulation:
where

N = M L /2
N = number of items (or links) in the bank
M = number of forms i.e., 2N /L
L = number of items (or links) per form

must be even

2 3 4 5 
1 12 13 14 15 

21 22 23 24 
29 30 31 32 

36 37 38 39 
P i  42 43 44 45 

47 48 49 50 
I  1 52 53 54 55 

57 58 59 60 
. 1 62 63 64 65 

67 68 69 70

21 Forms
10 Items per form
(21 x 10)/2= 105 items

71 72 73 74 75 
76 77 78 79 80 

1 82 83 84 85 
86 87 88 89 90 

1 92 93 94 95 
96 97 98 99 

101102 

103104
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AN INCOMPLETE WEB 
FOR SEQUENTIAL FORMS

I FIGURE 5.6 10 I

A 
B

Easy Forms C 
D 
E 
F 
G 
H 
I
J 
K 
L 
M 
N 
0 
P 
Q
R 21 Forms ^ 9 4  95 96 Hard Forms
S 
T 
U

Hard Forms

Formulation: N = M L/2 + K
where N = number of items (or links) in the bank

M = number of forms i.e., 2(N -  K )/L  
L = number of items (or links) per form 

must be even 
K = L/4, if L/2 is even 

= (L + 2 )/4 , if L/2 is odd

The incomplete webs in Figures 5.6.9 and 5.6.10 require us to estimate row means 
from a matrix with missing data. The skew symmetry o f link matrices helps the solution 
to this problem which can be done satisfactorily by iteration or regression.

5.7 BANKING THE KCTB D ATA

The KCTB is a short test so it was practical to ask all 101 persons to attempt all 23 
items giving us the response matrix illustrated in Figure 5.7.1. However, most item bank
ing projects involve the calibration o f hundreds o f items given to thousands o f examinees. 
It is then impossible to ask every person to take every item. Fortunately building an item 
bank does not require such an undertaking. As we saw in Section 5.6, items can be joined 
together by a network o f links. In general, two types o f form equating are possible, 
common persons and common items.

Easy Forms

A B C D E F G H I  J K L M N O P Q R S T U

1 2 3 4 5 
7 8 9 10 11 

14 15 16 17 18 19 20 21 
22 2 3 / \ 2 4  25 26 27 28 N 
29 /  \ 3 0  31 32 33 34

36 37 38 39 
41 42 43 44 

46 47 48 49 
51 52 53 54 

56 57 58 59 
61 62 63 64 

66 67 68 69 
71 72 73 74 

76 77 78 79 
81 82 83 84 

86 87 88 89 
91 92 93

21 Forms \ 9 4  95 96
10 Items per form /  97 98 99
21 x 10/2 + 3= 108 items y / lO 0 101102103

105106107108
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One way to link separate forms is to administer them both to the same sample o f 
persons. We illustrate “ common person”  equating with our KCTB data by defining two 
non-overlapping sequential tests, EASY and H ARD, and finding everyone who produced 
measurable responses simultaneously in both tests. This is an attempt at the vertical 
equating o f  an easy and a hard test and we can expect persons with usable scores on 
both tests to be scarce. With our KCTB example there are only 29 such persons out o f 
101. The picture o f  this common person equating in Figure 5.7.2 shows the core o f 29 
persons from  the total sample linking two non-overlapping parts o f  the KCTB, a 9-item 
E ASY  test and an 8-item H ARD  test.

_________________  F IG U R E  5.7.1 j_ _ _ _ _ _ _ _
COMMON PERSONS AND COMMON ITEMS 

W ITH KCTB

3 Items 25

Item 2 has been dropped because it is too easy to be useful.
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COMMON PERSON EQUATING 
WITH KCTB

_______| FIGURE 5.7.2 |_______

9 8
Easy Items Hard Items

(5 -1 1 ,1 3 ,1 5 )  (1 2 ,1 4 ,1 6 -2 0 ,2 2 )
25

29
Common
Persons

101

A  better way to equate forms is by using common items. This approach to KCTB 
is shown in Figure 5.7.3. There we show eight easy items connected to nine hard items by 
a six item link producing a 14 item EASY + L IN K  form taken by the 50 lowest scoring 
persons and a 15 item L IN K  + HARD form taken by the 51 highest scoring persons.
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5.8 COM M ON PERSON EQ U A TIN G  W ITH  THE KCTB

Am ong the 101 persons taking KCTB Items 3 through 25 we found two non-over
lapping sequential forms, called E ASY  and HARD, for which 29 persons had a pair o f  
usable scores. The E ASY form was made from Items 5 through 11, 13 and 15. The 
H AR D  form was made from Items 12, 14, 16 through 20 and 22. The 29 persons were 
those who remained after high scoring persons were removed because o f perfect scores 
on the E ASY test and low  scoring persons were removed because o f zero scores on the 
H AR D  TEST.
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The measurements o f these 29 persons on each form constitute the common person 
data for linking the EASY and HARD forms together. It is the difference in the two 
ability means which estimates the shift required to bring the EASY and HARD forms 
onto a common scale. The ability statistics for the 29 persons on each form are

The equating procedure is as follows:

1. Use the observed difference in sample mean ability 1.49 -  (-0 .57) = 2.06 as the 
estimated difficulty difference between the two forms.

2. Apportion this difference over the nine EASY items and the eight HARD items 
so that the average difficulty o f  all 17 items becomes zero.

For the nine EASY items use

[(17 -  9 )/17] (2.06) = 0.97

For the eight HARD items use

[ ( 1 7 -  8 )/17] (2.06) = 1.09

3. Bring the two forms onto a common scale by subtracting 0.97 from each EASY 
form item difficulty and adding 1.09 to each HARD form item difficulty/

These computations are displayed in Table 5.8.1. Column 1 gives the KCTB item 
name for the 17 items used in the EASY and HARD forms. Column 2 gives the separate 
item calibrations for the EASY form. Column 3 gives the separate calibrations for the 
HARD form. Because these separate calibrations are each centered within their own 
form Columns 2 and 3 each sum to zero.

Converting the calibrations in Columns 2 and 3 to a centered common person scale 
requires subtracting 0.97 from the EASY form item difficulties in Column 2 and adding
1.09 to the HARD form item difficulties in Column 3. This is done in Columns 4 and 5 
resulting in a common person scale for all 17 items centered at 0.0.

In order to evaluate the efficacy o f this common person equating we obtained a 
combined calibration o f all 17 items from the same 29 persons. Column 6 gives these 
reference calibrations and Column 7 gives the differences between the common person 
scale and the reference scale.

Figure 5.8.1 compares the common person scale and the reference scale. The small 
differences between the two scales show that the common person technique can produce 
results equivalent to a combined calibration o f both tests.

Mean Ability 
Standard Deviation

EASY Form

1.49
0.80

HARD Form

-0.57
0.43

Difference

2.06
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I TA R l.F  RR 1 I
EQUATING EASY AND HARD FORMS

USING COMMON PERSONS

1 2 3 4 5 7

Separate Calibrations Common Person Scale Reference
Item EASY H AR D EASY HARD Calibration* Difference
Name dE dH dc =dE -  0.97 dc =dH +1.09 dR ^c - c*r

5 0.03 -0 .9 4 -1 .0 4 - 0.10
6 0.03 -0 .9 4 -1 .0 4 - 0.10
7 -0 .9 4 -1 .91 -2 .0 5 -0 .1 4
8 0.03 -0 .9 4 -1 .0 4 - 0.10
9 0.24 -0 .7 3 -0 .8 2 -0 .0 9

10 0.43 -0 .5 4 -0 .6 2 -0 .0 8
11 1.36 0.39 0.35 -0 .0 4
12 -1 .4 4 -0 .3 2 - 0.10 0.22
13 - 0.22 -1 .1 9 -1 .3 0 - 0.11
14 -1 .2 5 -0 .1 6 0.05 0.21
15 -0 .9 4 -1 .91 -2 .0 5 -0 .1 4
16 - 2.66 -1 .5 7 -1 .3 0 0.27
17 - 0.12 0.97 1 .10 0.13
18 0.65 1.74 1.81 0.07
19 0.65 1.74 1.81 0.07
20 1.83 2.92 2.90 - 0.02
22 2.32 3.41 3.36 -0 .0 5

Mean 0.00 0.00 0.00 0.00 0.00

Standard
Deviation 0.70 1.70  

* Based on 29 persons taking all 17

1.62

items

1.65 0.14
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FIGURE 5.8.1

COMPARISON OF COMMON PERSON SCALE 
WITH THE REFERENCE SCALE

REFERENCE
SCALE

COMMON PERSON SCALE

5.9 COMMON ITEM  EQUATING W ITH THE KCTB

To illustrate common item equating we have divided the 23 KCTB items into three 
parts: EASY, L IN K  and HARD. The EASY + L IN K  form contains eight EASY items and 
six L IN K  items to make a 14 item easy test. The L IN K  + HARD form contains the six 
common L IN K  items plus nine HARD items making a 15 item hard test.

Each o f these forms was calibrated on separate samples. The EASY + L IN K  form 
was calibrated on the 50 lowest scoring persons and the L IN K  + HARD form was cali
brated on the 51 highest scoring persons. These calibrations are given in Table 5.9.1.

The paired calibrations o f the six linking items, 11 through 16, are given again in 
Columns 2 and 3 o f Table 5.9.2. Their differences D = dE -  dH are given in Column 4. 
The mean o f these differences is 4.11 which is the difficulty difference between the 
EASY + L IN K  form and the L IN K  + HARD form. When this difference o f 4.11 is sub
tracted from D we have the residuals from linking given in Column 5.
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_____________ I TABLE 5.9.1 |______________
ITEM CALIBRATIONS OF EASY + LINK  

AND LINK + HARD FORMS

Item
Name

3
4
5
6
7
8 
9

10

EASY + L IN K LIN K  + HARD
Difficulty

-  3.80
-  2.00
-  0.37
-  0.37
-  2.00 
-  0.37

0.06
0.20

Error Difficulty Error

11 0.97 .36 -  2.24 .49
12 2.08 .38 -  1.83 .44
13 1.58 .36 -  3.22 .73
14 1.95 .37 -2 .8 0 .61
15 0.84 .36 -  3.90 1.01
16 1.21 .36 -  2.02 .46
17 0.60
18 -  0.50
19 0.26
20 1.18
21 1.56
22 1.56
23 2.78
24 4.51
25 4.06

Mean 0.00 0.00

Standard
Deviation 1.68 2.64

I f  these items are providing a usable link, their residuals should distribute around 
zero with the standard error predicted by the model. The standard errors

Sd = (Se 2 + S h 2 ) *

o f these residuals are given in Column 6 and the standardized residuals 

z = (D -  4 .1 1)/SD 

are given in Column 7.

Figures 5.9.1 is a p lot o f  the E ASY calibrations o f these L IN K  items against their 
H ARD  calibrations. The item points are well within 95% control lines demonstrating that 
the shift estimated from this link can be used to connect the two forms.
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C l
TABLE 5.9.2 

LINK ANALYSIS

1 2 3 4 

Calculating L IN K  SHIFT

5 6

Testing LIN K  FIT

7

Residual Standard Error Standardized
Item EASY HARD Difference Difference of Residual Residual
Name dE D = dE -  dH D -  4.11 So z = ( D -  4.11)/SD

11 0.97 -  2.24 3.21 -0 .9 0 0.61 -1 .4 8
12 2.08 -  1.83 3.91 - 0.20 0.58 -0 .3 4
13 1.58 - 3 .2 2 4.80 0.69 0.81 0.85
14 1.95 -  2.80 4.75 0.64 0.71 0.90
15 0.84 -3 .9 0 4.74 0.63 1.07 0.59
16 1.21 -  2.02 3.23 - 0.88 0.58 -  1.52

Mean 1.44 -  2.67 4.11 0.00 -0 .1 7  — 0

Standard 
Deviation 0.52 0.79 0.76 0.76 1.13 — 1

6
LINK Shift = 2  Dj/6 = 4.11

i

Standard Error of Residual: SD = (Se 2 + Sh 2 )’/j 

Expected mean of z is 0 

Expected standard deviation of z is 1

Our next step is to connect EASY + L IN K  to L IN K  + HARD. We do this by con
necting both LINKs and HARD to EASY. Table 5.9.3 shows the method used. In Column
I  we have the item name for each o f the 23 KCTB items. The item difficulties o f Items 3 
through 10 are given in Column 2. Because we will reference all other items to EASY, we 
record the difficulties for Item 3 through 10 directly into Column 6. For L IN K  Items 11 
through 16 we have two sets o f difficulties. In Column 2 we have difficulty estimates for 
Items 11 through 16 from calibration with the EASY items. In Column 3 we have dif
ficulty estimates for these same items obtained from their calibration with the HARD 
items.

To the L IN K  difficulties dH we add the link difficulty difference o f 4.11. Then we 
average the L IN K  dE difficulties with the L IN K  dH difficulties that were adjusted by the 
L IN K  shift o f 4.11. The average o f the two L IN K  estimates (dE + dH + 4.11)/2 for Items
I I  through 16 is given in Column 5. We enter these in Column 6.
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FIG U R E 5.9.1

LINK FOR COMMON ITEM EQUATING

Form
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TABLE 5 9.3. L
EQUATING EASY AND HARD FORMS 

BY A COMMON ITEM LINK

J _  _2_ _3_ _4_ _5_ 6 7

Calibrating Each Form Shifting to EASY + L IN K  Common Item Scale
Item EASY + LIN K  L IN K  + HARD Centered
Name dE dH dH +4 .11  (dE + dH + 4 .11)/2  dc dc -  2.30

3 -3 .8 0
4 - 2.00
5 -0 .3 7
6 -0 .3 7
7 - 2.00
8 -0 .3 7
9 0.06

10 0.20
11 0.97 -2 .2 4 1.87
12 2.08 -1 .8 3 2.28
13 1.58 -3 .2 2 0.89
14 1.95 -2 .8 0 1.31
15 0.84 -3 .9 0 0.21
16 1.21 - 2.02 2.09
17 0.60 4.71
18 -0 .5 0 3.61
19 0.26 4.37
20 1.18 5.29
21 1.56 5.67
22 1.56 5.67
23 2.78 6.89
24 4.51 8.62
25 4.06 8.17

Mean 0.00 0.00 4.11

Standard
Deviation 1.68 2.64 2.64

1.42
2.18
1.24
1.63
0.53
1.65

-  3.80 -  6.10
-  2.00 -  4.30
-  0.37 -  2.67
-  0.37 -  2.67
-  2.00 -  4.30
-  0.37 -  2.67

0.06 -  2.20
0.20 - 2.10
1.42 -  0.92
2.18 - 0.12
1.24 -1 .0 6
1.63 - 0 .6 7
0.53 - 1 .7 7
1.65 -0 .6 5
4.71 2.41
3.61 1.31
4.37 2.07
5.29 ,  2.99
5.67 * 3.37
5.67 3.37
6.89 4.59
8.62 6.32
8.17 5.87

2.30 0.00

3.37 3.37

Finally in order to place the HARD items on the common scale we add 4.11 to 
HARD Items 17 through 25 and bring these difficulty estimates over to complete Column 
6. We then have in Column 6 a new common item scale with the average o f two LIN K  
difficulty estimates and the HARD difficulty estimates all connected to the EASY item 
difficulty estimates.
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The mean o f  this common item scale in Column 6 is 2.30 so we subtract 2.30 from 
each item difficu lty in Column 6 to  center the new scale at 0.00 as shown in Column 7.

T o  assess the adequacy o f  this common item equating we will compare it to the item 
difficulties we would have gotten had we not attempted linking but used all 101 person 
responses to all 23 items. The common item difficulties from Table 5.9.3 are given in 
Column 2 o f  Table 5.9.4. Column 3 gives the reference calibrations o f  all 23 items from 
all 101 persons, and Column 4 shows the differences between the common item d iffi
culties dc and the reference scale item difficulties d^. The p lot o f these values given in 
Figure 5.9.2 shows the items close to the expected identity line.

I TABLE 5.9.4  I
COMPARING COMMON ITEM EQUATING WITH THE

REFERENCE SCALE

1 2 3 4■“““
Item Common Item Scale Reference Scale Difference
Name dc -  2.30 d R dC

3 -  6.10 - 6.20 .10
4 - 4 .3 0 -4 .11 -  .19
5 -  2.67 -2 .5 8 -  .09
6 -  2.67 -2 .7 2 .05
7 - 4 . 3 0 -4 .3 4 .04
8 -  2.67 -2 .5 8 -  .09
9 -  2.24 -2 .0 6 -  .18

10 -  2.10 -2 .0 6 -  .04
11 -  0.92 -1 .0 3 .11

12 -  0.12 - 0.12 .00

13 -  1.06 -0 .8 5 -  .21

14 -  0.67 -0 .5 2 -  .15

15 -  1.77 -1 .5 2 -  .25

16 -  0.65 -0 .7 7 .12

17 2.41 1.93 .48

18 1.31 1.36 -  .05

19 2.07 2.01 .06

20 2.99 2.88 .11

21 3.37 3.33 .04

22 3.37 3.33 .04

23 4.59 4.52 .07

24 6.32 6.27 .05

25 5.87 5.81 .06

Mean 0.00 0.00 0.00

Standard
Deviation 3.37 3.32 0.15
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FIG URE 5.9.2

COMPARISON OF COMMON ITEM SCALE 
WITH THE REFERENCE SCALE

REFERENCE
SCALE

COMMON ITEM  SCALE

5.10 C RITER IO N  REFERENCING THE KCT VAR IA BLE

By locating all 23 KCTB items on a single scale we can make the definition o f the 
KCT variable more explicit. These items which now mark out the variable are constructed 
out o f a few basic components: number o f taps, number o f reverses and overall distance 
across blocks. It is the way these underlying components evolve along the variable which 
documents for us what a measure on the KCT variable means. Figure 5.10.1 gives the dif
ficulty level o f the KCTB items together with their number o f taps, reverses and distances.
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R ow  1 o f  Figure 5.10.1 contains the items o f KCTB arranged by their calibrations 
on the variable according to the logit scale given at the bottom o f the figure. The number 
o f taps for each item is given in Row  2. Items 1 and 2 are two-tap items passed by all 101 
persons in the sample. As we move up the variable, the number o f  taps goes from two to 
seven. Below R ow  2 we have marked the median difficulty level for each number o f taps 
from two to  seven. Row  3 shows the number o f  reverses in each item and their median 
difficu lty levels. R ow  4 shows the distances in blocks tapped for each tapping series and 
their medians.

The pattern o f taps, reverses and distances in Figure 5.10.1 show how the KCT 
variable is built out o f  these basic operations. This provides a substantive, or criterion, 
reference for the KCT variable. The resulting picture gives us insight into the nature o f 
the variable which reaches beneath the individual items. In particular it shows us how to 
generate more items at any designated difficu lty level.

We can also learn about the KCT variable by seeing how the 101 persons in our 
sample are distributed along it. In Rows 5 and 6 we show each person’s position on the 
variable by their age in years. This allows us to norm reference the variable with age 
medians from  three to  eight years and to give an age distribution o f  “ mature”  persons o f 
9 or more years o f  age with a mean at 1.3 logits and a standard deviation o f 1.9 logits. 
Thus Figure 5.10.1 becomes a map o f the variable which is both criterion and norm 
referenced.

5.11 IT E M  C A L IB R A T IO N  Q U A L IT Y  CO NTRO L

We cannot expect the items in a bank to  retain their calibrations indefinitely or to 
work equally well for every person with whom they may be used. The quality o f  item 
calibration must be supervised continuously. This can be done conveniently by a routine 
examination o f  the differences between how persons actually respond to particular items 
and how we expect them to  respond given our calibrations o f  the items and our measure
ments o f  the persons. These differences are residuals from expectation. An occasional 
surprising item residual suggests an anomalous testing situation or a peculiar person. 
Trends in item residuals, however, may be indicative o f  item failure. Tendencies for items 
to run into trouble, to  shift d ifficu lty or to be biased for some types o f persons can be 
exposed by a cumulative analysis o f  item residuals over time, place and person type. 
Problematic items can then be removed from  use or brought up-to-date in difficulty.

The purpose o f  item quality control is to maintain supervision over item calibration 
stability against the possible influences o f  age, sex, education or any other factor which 
might disturb item functioning. A  quality control procedure requires that item usage be 
accompanied by concomitant educational and demographic information so as to provide 
a basis fo r analyzing whether these other variables threaten the stability o f  item calibra
tion and hence disturb the interpretation o f test responses. The discussion which follows 
builds on the analysis o f  f it  developed in Chapter 4.

To  implement item quality control we save from each use o f an item: 

x vi the response 0 or 1 o f person v to item i,

bv the ability estimate o f person v derived from their score on whatever
“ test”  o f  calibrated items they took and

(y  ) the vector o f  demographic information which characterizes person v.
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When the two pieces o f information xvi and bv are combined with the item’s bank 
difficulty d; we can form a standardized residual zvi which will retain all the information 
in this use o f item i which bears on the possibility o f  a disturbance in its functioning.

In general this estimated residual zvi is 

zvi = (*v i -  Pvi)/(p vi(1 -  Pv,n  »

where

pvi = exp (bv -  d j)/[1 + exp (bv -  d,)]

is the estimated probability o f success for person v on item i and hence the estimated 
expected value o f xvi given the model.

Since xvi can only take one o f two values, 0 for an incorrect response or 1 for a 
correct response, the possibilities for zvi and its square zvi2 are limited to those given in 
Table 5.11.1. The improbability o f any particular response x vi, as a function o f its zvi2, is 
1/(1 + zvi2). In the KCTB example there are 101 persons taking 23 items. These 23 x 101 
item-by-person responses imply 2323 occasions for misfit. However, misfit can only show 
up when the difference between person ability bv and item difficulty d; is large enough so 
that one o f the possible values for the response xvi becomes significantly improbable. For 
this to happen the difference (bv -  dj) must be at least three logits. As a result there are 
only about 500 item-by-person occasions where misfit could occur.

_________________ TABLE 5.11.1 |______________

STANDARDIZED RESPONSE RESIDUALS

Standardized Residuals

Response
Value

^/i

As a normal deviate 

zv i~ N ( 0.1 )

As a chi-square

2 _ 2 
Zvi Xl

"Incorrect"
0

zv i = - P v i / t p V|<1 “  P v i> ]54 

= - [ p vi/ ( 1 - p vi) ] *

= -  exp [(bv -  d j)/2 ] zv2i = exp (bv -  dj)

"Correct"
1

Zvi = <1 “ P v i> /(P v i(1 "  P vi> ]1/4

= 1(1 “ P v iJ /P v i]54

= exp [(dj -  bv) /2 ] z 2, = exp Id, -  bv)
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Table 5.11.2 gives a summary o f the unexpected responses observed in the KCTB 
data. Column 1 gives the range o f absolute difference between person ability and item 
difficulty. Column 2 expresses this difference as z2 = exp (I b -  d |) and Column 3 con
verts z2 to the response improbability [ 1/(1 + z2)] it implies.

______________________ | TABLE 5.11.2 |_____________________
SUMMARY OF UNEXPECTED RESPONSES ON KCTB 

101 PERSONS BY 23 ITEMS

Ability-
D ifficulty
Difference z2

Improbability 
1/(1 + z 2)

Possible
Count

Expected
Count

Observed
Count

Item
Names

Person
Names

Over 4.6 Over 99 Under .01 226 2 3 4 . 0 9 C 4 9 M ^ )6 8 F . 93F

3.9 - 4.6 4 9 -9 9 .02 - .01 133 5 3 8, 10. 12 79M 83F, 95M

2.9 - 3.8 1 9 -4 9 .05 - .02 184 20 8 H 3 ( 3 ]  5 12M, 13M, 27F

6 . ® 1 1  47M .C49M ^>82F

18, 19 9 5 m | 10F

We have counted the number o f item-by-person interactions which could fall within 
each row o f  Table 5.11.2 and multiplied this “ possible”  count by its improbability to 
estimate the count we might expect i f  these data fit the model. This was done by multi
plying (226) x .01 s  2, (226 + 133) x .02 s  (2 + 5) and (226 + 133 + 184) x .05 s  
(2  + 5 + 20). The actual counts observed in the data are given in Column 6. Thus when 
(b  -  d ) is over 4.6 logits we expect about two improbable responses and we observe 
three. When (b  -  d ) is between 3.9 and 4.6 we expect about five improbable responses 
and again we observe three. Finally when (b -  d ) is between 2.9 and 3.8 we expect about 
twenty improbable responses but observe only eight. These data seem to fit the model 
rather well.

When we scan the 14 most unexpected item and person responses given in Table 
5.11.2, we see that they are well dispersed over items and persons. Only Items 3 and 7 
and Persons 49M and 95M appear twice and the sexes are equally represented. We must 
conclude that no clear sign o f  systematic misfit has been detected in these data.

Nevertheless, in order to use the KCTB example to show the application o f item 
quality control, we will proceed with a further analysis o f  the six most unexpected 
responses. These responses o f Persons 49M, 68F, 79M, 83F, 93F and 95M to Items 4, 7, 
8 , 9, 10 and 12 are given in Table 5.11.3. For each o f these unexpected incorrect respon
ses, given by able persons on easy items, we have entered the appropriate (bv - dj). We 
have also given for each item its characteristics on the KCT variable, namely its number 
o f taps, reverses and distance and the demographic characteristics o f  sex, age and grade 
fo r each person.
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TARI F R 11 3
THE SIX MOST UNEXPECTED RESPONSES 

ON KCTB 
(101 Persons By 23 Items)

Person
Ability Item Difficulty

d;

bv -4 .3 -4 .1 - 2.6 - 2.1 - 2.1 - 0.1 Name Sex Age Grade

0.4 0(4.7) * 1 1 1 1 1 49 M 16+ 12+
1.4 1 0(5.5) 1 1 1 1 68 F 16+ 12+
1.9 1 1 0(4.5) 1 1 1 79 M 16+ 12+
2.4 1 1 1 1 0(4.5) 1 83 F 16+ 12+
3.6 1 1 1 0(5.7) 1 1 93 F 16+ 12+
4.3 1 1 1 1 1 0(4.4) 95 M 16+ 12+

Person Characteristics

Item
Characteristics

Name #7 #4 #8 J 9 #10 #12

Taps 4 3 4 4 4 4
Reverses 0 0 1 2 2 2
Distance 3 3 5 6 5 7

* ( b -  d) = (0 .4 ) -  (-4 .3 ) = 4 .7

The difficulty characteristics o f the items in reverses and distance show the increase 
we would expect as the items become more difficult. A ll six items are on the easy end o f 
the variable. The six persons, on the other hand, are all relatively able adults. This sug
gests that, i f  a systematic source o f misfit has been detected here, it could only be a slight 
tendency towards carelessness, or lapses o f attention, among some older persons working 
on items rather too easy for them.

Fit analysis matrices, like Table 5.11.3, which bring together the person and item 
characteristics o f the most unexpected responses, are convenient for supervising the 
quality o f  item functioning. These matrices identify and suggest corrections for the sys
tematic sources o f item failure shown in the data.

The calculations necessary to evaluate unexpected responses can be accomplished in 
three ways. The first two are UCON by computer and the hand method explained in 
Chapter 4. The third way is a crude, but quick, method which often suffices in practical 
work.

This crude method o f fit analysis consists o f identifying and calculating only the few 
largest z2 ’s observed on an item and then adding to them a 1 for each other person taking 
that item. This assumes that all o f the disturbance observed in that item is due to its 
outstanding residuals and that the rest o f the pattern is more or less as expected.
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Table 5.11.4 gives an illustration o f this method. There we have taken from Table 
5.11.3 just the single largest zvi2 observed in our KCTB data and added to it a 1 for each 
other person taking that item, in this case 100. This gives zvi2 + 100 = X2 as the chi-square 
fo r that item and vj = X2/100 as the item mean square.

To  see whether this crude method can be useful, we will compare it with UCON and 
the hand method described in Chapter 4, but now applied to these KCTB data. In those 
procedures we sum all 101 actual z2 ’s to make our item fit analysis and then divide this 
sum o f squares by its 100 degrees o f freedom to get the mean squares shown in Table 
5.11.5.

I TABLE 5.11.4 l
_________________________  CRUDE FIT ANALYSIS I_________________________

FOR SIX KCTB ITEMS I

Item
Name

A bility  minus Difficulty  
Difference

Single
Item
z2

Crude Fit Statistics 
Chi-Square Mean Square 

X2= lz2 + 100) w = X2/100

9 5.7 299 399 4.0
4 5.5 245 345 3.5
7 4.7 110 210 2.1

10 4.5 90 190 1.9
8 4.5 90 190 1.9

12 4.4 81 181 1.8

_________________________ | TAB LE 5.11.5 |_______________________
A COMPARISON OF ITEM QUALITY CONTROL METHODS 

APPLIED TO KCTB

Item
Name

UCON  
Mean Square

Hand Fit 
Mean Square

Crude Fit 
Mean Square

9 3.42 3.16 4.0

4 2.64 2.56 3.5

7 1.48 1.40 2.1

10 1.46 1.20 1.9

8 1.43 1.12 1.9

12 1.36 0.98 1.8

The UCON and hand fit methods approximate one another rather closely. Although 
the crude fit  mean squares are somewhat larger in magnitude, their order is identical to 
the other methods and their values are sufficiently close to get a clear idea concerning the 
relative fit  o f  these six items. Table 5.11.5 suggests that the crude method can be useful 
for the quick analysis o f  item functioning.
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While norms are no more fundamental to the calibration o f item banks than are 
distributions o f person heights to the ruling o f yardsticks, it is usually useful to know 
various demographic characteristics o f a variable defined by an item bank. Some o f these 
demographic characteristics may even have normative implications under particular 
circumstances. Because o f a shift in emphasis, norming a variable in the Rasch approach 
takes much less data than norming a test. We need only use enough items to estimate the 
desired “ norming”  statistics. Once the variable is normed, then all possible scores from all 
possible tests drawn from the calibrated bank are automatically norm-referenced through 
the variable.

Often we are satisfied with a mean and standard deviation for each cell in our norm
ative sampling plan. These two statistics could be estimated from a random sample o f 100 
or so persons taking a norming test o f only two items. O f course, a somewhat longer test 
o f 10 or 15 items will do a better job. Not only will the estimates be better but the extra 
items will yield standard errors around the norming statistics and thus a test o f fit for the 
plausibility o f the data. More than 15 items in a norming test, however, will seldom be 
necessary. This means that we could norm six different variables simultaneously by allo
cating 15 items to each o f six subtests administered as one 90-item composite test.

We can estimate quick norms from frequency data on bank calibrated items without 
scoring or measuring the individual persons. This may be useful when trimming sample 
data is undesirable. I f  we seek a probability sample from a population, for example, we 
would rather not distort the sample’s status by eliminating some o f the persons sampled 
because they earned zero or perfect scores.

This norming procedure can be accomplished by working directly from the model 
and the observed number o f right answers to each calibrated item. ,

1. For each sampling cell in the norming study, select from the item bank a suitable 
set o f K  calibrated items sufficiently spaced in difficulty d; to cover the expected 
ability dispersion o f that particular sampling cell. Note that each sampling cell, in 
principle, has its own individually tailored norming test.

2. Administer this test o f  K  items to a random sample o f N  persons from the speci
fied cell.

3. Observe the number o f persons s; succeeding on each item.

4. Calculate the natural log odds h; o f these correct answers Sj for each item

5.12 NORM REFERENCING THE KCT VARIABLE

5. Regress these log odds h; on the associated item difficulties d; over the K items to 
obtain the intercept A  and slope C o f the least squares straight line.

6 . Estimate the population mean M and standard deviation SD o f that cell’s abilities

hj = fin [Sj/(N -  s,)l i = 1,K [5.12.1J

as

M = -  A /C [5.12.2]

S D =  1.7 [(1 -  C2)/C 2] * [5.12.3]

We will apply these procedures to the KCTB sample o f 101 persons to see how well 
they recover the sample mean and standard deviation that we have already estimated 
from the measurements o f each o f the 101 persons to be M* = 0.19 and SD' = 2.44.
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We have the item difficulties d; for Items 3 through 25 and so need only to compute 
the natural log odds hj o f  observed correct answers to each o f these items. The values of 
h; are given in Column 3 o f Table 5.12.1 with the corresponding item difficulties in 
Column 4.

Regressing these log odds right answers on the item difficulties over the 23 items 
gives us an intercept o f  A  = 0.07 and a slope o f C = -0.56.

Equation 5.12.2 estimates the sample mean as 

M = -A/C

= -0 .0 7 /-0 .5 6

= 0.13.

J TABLE 5.12.1 I
KCTB LOG ODDS CORRECT ANSWERS 

AND ITEM DIFFICULTIES

1 2 _3_ 4

Persons Log Odds Item
Item Succeeding Correct Difficulty
Name si hs=Cn[Sj/N -  Sj)] di

3 98 3.49 - 6.20
4 91 2.21 -4 .1 1
5 82 1.46 -2 .5 8
6 83 1.53 -2 .7 6
7 92 2.32 -4 .3 4
8 82 1.46 -2 .5 8
9 78 1.22 -2 .0 6

10 78 1.22 -2 .0 6
11 68 0.72 -1 .0 3
12 57 0.26 - 0.12

13 66 0.63 -0 .8 5
14 62 0.46 -0 .5 2
15 73 0.96 -1 .5 1
16 65 0.59 -0 .7 7

17 30 - 0.86 1.93

18 37 -0 .5 5 1.36

19 29 -0 .91 2.01

20 20 -1 .4 0 2.88

21 16 -1 .6 7 3.33

22 16 -1 .6 7 3.33

23 8 -2 .4 5 4.52

24 2 -3 .9 0 6.27

25 3 -3 .4 9 5.81

N = 101 Mean 0.00

Standard
Deviation 3.32
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Equation 5.12.3 estimates the sample standard deviation as

SD = 1.7[(1 -  C2 )/C 2 ] *

= 1.7 [(1 -  0.311/0.31 ] *

= 2.54.

These quick norm regression estimates o f 0.13 for the mean and 2.54 for the stan
dard deviation compare satisfactorily with the values o f 0.19 and 2.44 computed by 
measuring each o f the 101 persons and then calculating their mean and standard deviation 
in the usual way.

The plot o f the log odds correct answers hj against the item difficulties d, in Figure
5.12.1 shows how well these norming data fit the straight line expected by the model.

FIGURE 5.12.1

THE QUICK NORMING METHOD OF ESTIMATING 
SAMPLE MEANS AND STANDARD DEVIATIONS  

APPLIED TO KCTB

LOG ODDS 
CORRECT 
ANSWERS
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ITEM
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Intercept = 0.07 
Slope = -0 .5 6
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6  DESIGNING TESTS

6.1 IN TR O D U C TIO N

In Chapter 5 we have shown how to establish the operational definition o f  a variable 
by means o f  a calibrated bank o f  items. The next step is to find out how to  use these cali
brated items to  make measures. T o  do this we must consider two related questions. First, 
we need to  find out how to  make the best possible selection o f calibrated items from our 
bank in order to make any particular measurements we have in mind most effective. 
Second, given such a selection o f  items and an observed pattern o f responses to them, we 
need to  find out how to evaluate the quality o f  this observation and, i f  it is valid, how to 
extract from  it the measure we seek, together with its standard error. It is the first ques
tion, best test design, which is the major topic o f  this chapter. Chapter 7 deals with 
making measures.

6.2 TH E  M EA SU R EM EN T TA R G E T

When we plan a measurement, there must be a target person or group o f  persons 
about whom we want to know more than we already know. I f  we care about the quality 
o f  our proposed measurements, then we will want to construct our measuring instrument 
with the specifics o f  this target in mind. In order to do this systematically we must begin 
by setting out as clearly as we can what we expect o f  our target. Where do we suppose it 
is located on the variable? How uncertain are we o f that approximate location? What is 
the lowest ability we imagine the target could have? What is the highest? How are other 
possible values distributed in between?

Sometimes we have explicit prior knowledge about our target. We, or others, have 
measured it before and so we can suggest its probable location and dispersion directly in 
terms o f  these prior measures on the variable and their standard errors. Sometimes we can 
use items calibrated along the variable, some o f  which we believe are probably just right 
fo r the target, some o f  which are nearly too  hard and some o f which are nearly too easy. 
Then we can take from  the difficulties o f  these reference items rough indications o f the 
probable center and boundaries o f  our target.

One way or another we assemble and clarify our suppositions about our target as 
well as we can so that we can derive from them the test design which has the best chance 
o f  most increasing our knowledge.

Obviously i f  we know everthing we want to know about our target, then we would 
not have to measure it in the first place. However, no matter how little we know, we 
always have some idea o f  where our target is. Being as clear as possible about that prior 
knowledge is essential fo r the design o f  the best possible test.

Graham A. Douglas collaborated in the preparation o f parts o f this chapter. See Wright and Douglas, 
1975a.

129
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A  target specification is a statement about where on the variable we suppose the 
target to be. We express our best guess by specifying the target’s supposed center, its 
supposed dispersion and perhaps its supposed shape or distribution. I f  we let

M = our best guess as to target location,
S = our best guess as to target dispersion,
D = our best guess as to target distribution,

then we can describe a target G by the expression G(M,S,D) and we can summarize our 
prior knowledge, and hence our measurement requirements for any target we wish to 
measure, by guessing, as well as we can, values for the three target parameters M,S and D.

A  picture o f a target is given in Figure 6.2.1. Guessing the supposed location M o f a 
target is perfectly straightforward. However, guessing the dispersion S and the distribu
tion D forces us to think through the difference between a target which is a single person 
and one which is a group. For the single person, S can describe the extent o f our uncer
tainty about where that person is located. The larger our uncertainty, the larger S.

I f  we can specify boundaries within which we feel fairly sure that the person will be 
found, we can set S so that M±kS defines these boundaries. Then, even if we have no clear 
idea at all about the distribution D o f our uncertainty between these boundaries, we can 
nevertheless expect that at least (1-1/k2) o f the possible measures will fall within M±kS.

I f  we go further and expect that the measures we think possible for the person will 
pile up near M, then we may even be willing to take a normal distribution as a useful way 
to describe the shape o f our uncertainty. In that case we can expect .95 o f the possible 
measures to fall within M±2S and virtually all o f them to fall within M±3S.

We will refer to these two target distributions as the Tchebycheff interval and the 
normal. We might consider other target distributions, but these two seem to cover all 
reasonable target shapes rather well. For example, i f  we feel unhappy about thinking o f 
our target as approximately normal, then it is unlikely that we will have any definite 
alternative clearly in mind. Thus, the most likely alternative to a normal target is one o f 
unknown distribution, best captured by a Tchebycheff interval. This realization that all 
possible target shapes can be satisfactorily represented by just two reasonable alternatives 
is important because it makes a unique solution to the problem o f best test design not 
only possible but even practical.

I f  the target is a group rather than an individual, then we may take S and D to be 
our best guess as to the standard deviation and distribution o f that group. I f  we think the 
group has a more or less normal distribution, then we will take that as our best guess for 
D. Otherwise we can always fall back on the Tchebycheff interval.

Finally, we must be explicit about how precise we want our measurement to be. 
A fter all, this is our motive for measuring. It is just because our present knowledge about 
our target is too approximate to suit us that we want to know more precisely where our 
target is and, i f  it is a group rather than an individual, more precisely about its dispersion. 
However, whether the target is an individual or a group, our decision about the desired 
standard error o f  measurement SEM will be made in terms o f individuals, for that, in the 
end, is what we actually measure.

In the case o f a one-person target, we want the SEM to be enough smaller than S to 
reward our measurement efforts with a useful increase in the precision o f our knowledge 
about where that target person is located. In the case o f a group target we want to achieve
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an improved estimate not only o f  M, the center o f the group, but also o f S, its dispersion. 
The observable variance o f measures over the group estimates not only the underlying 
variance in ability S2 but also the measurement error variance SEM2. Our ability to see 
the dispersion o f  our target against the background o f  measurement error depends on our 
ability to distinguish between these two components o f variance. Since they enter into 
the observable variance o f  estimated measures equally, the smaller SEM2 is with respect 
to S2, the more clearly we can identify and estimate S2, the component due to target dis
persion. Thus, fo r all targets we seek an SEM considerably smaller than S.

___________________ I F IG UR E 6.2.1 I___________________

-------------------------- THE PICTURE OF A TARGET -------------------------

R E LA TIV E
FREQ UENC Y

P

4S

SHAPE D M ± 2 S  M ±3S

Interval .75+ .89+

Normal .95 .99

6.3 TH E  M EA SU R IN G  TEST

A  test is a set o f  suitably calibrated items chosen to go together to form a measuring 
instrument. The complete specification o f a test is the set o f  all parameters which charac
terize these items. But when we examine a picture o f  how a test works to transform ob
served scores into estimated measures, we see that the operating curve is rather simple and 
lends itself to specification through just a few  test parameters. When the way our items 
operate fits the Rasch model, then we know that the only item parameters which we need 
to  consider in order to determine the operating characteristics o f  a test are its item d iffi
culties. When we impose a reasonable fixed distribution on these difficulties, then no 
matter how many items we use, we can reduce the number o f test parameters to only three.
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FIGURE 6.3.1 [

THE OPERATION OF A TEST

R ELATIVE  
SCORE 
f = r/L

A B IL ITY  
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.  b

db
LMD — gf LOD = C f/L

In Figure 6.3.1 we can see from the shape o f the test operating curve that its two 
outstanding features are its position along the variable, which we will call test height, and 
the range o f abilities over which the test can measure more or less accurately, a character
istic caused primarily by the dispersion o f the item difficulties, which we will call test 
width.

But height and width do not complete the characterization o f a test. When we look 
more closely at the way the test curve transforms observed scores into inferred measures 
we see that there is a discontinuity in observable scores which is going to determine the 
smallest increment in ability we can measure with any particular test. This least measur
able difference LMD depends on the test’s least observable difference LOD. Since the least 
change possible in a test score is one, the LOD in relative score f  = r/L, must be 1/L. In 
Section 6.5 we will find that the standard error o f  measurement, or least believable dif
ference, SEM also depends on the number o f items in the test. Indeed SEM = LMD14. So 
in order to finish characterizing a test we must also specify its length.
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From this we see that any test design can be defined more or less completely just by 
specifying the three test characteristics; height, width and length. I f  we let

H = the height o f  the test on the variable, that 
is, the average difficulty o f its selected 
items,

W = the width o f the test in item difficulties,
that is, the range o f its item difficulties 
and

L  = the length o f the test in number o f items,

then we can describe a test design T  by the convenient expression T(H ,W ,L).

In the practical application o f  best test design, however, we will have to  approximate 
our best design T  for a target G from a finite pool o f  existing items. In order to discrim
inate in our thinking between the best test design T (H ,W ,L ) and its approximate realiza
tion in practice, we will describe an actual test as t(h ,w ,L ) where

h = the average difficu lty o f  its actual items,
and

w = an estimate o f their actual difficulty range.

6.4 TH E SHAPE OF A  BEST TEST

A  best test is one which measures best in the region within which measurements are 
expected to occur.* Measuring best means measuring most precisely. A  best test design 
T (H ,W ,L ) is one with the smallest error o f  measurement SEM over the target G(M,S,D) 
for given length L  (or, what is equivalent, with the smallest L  for a given value o f SEM). 
“ Over the target”  implies the minimization o f a distribution o f possible SEMs. Thus, a 
position with respect to the most likely target distribution must be taken before the 
minimization o f  SEM can proceed.

We bring the profusion o f  possible target shapes under control by focusing on the 
tw o extremes—interval and normal. How shall minimization be specified in each case? For 
a normal target it seems reasonable to maximize average precision, that is, to minimize 
average SEM, over the whole target.

T o  decide what to do for an interval target, we need to know how the SEM varies 
over possible test scores. When we derive an exact form fo r the precision o f  measurement, 
we find that for ordinary tests with less than three logits between adjacent items, pre
cision is a maximum fo r  measurements made at the center o f  the test and decreases as 
test and target are increasingly off-center with respect to one another. For tests centered 
on their targets this means that maximizing precision at the boundaries o f an interval 
target is a good way to  maximize precision over the target interval. So for interval targets 
we will maximize precision at the target boundaries.

When we derive the SEM2 from our response model we will discover that it is the re
ciprocal o f  the information about ability supplied by each item response averaged over 
the test. Since the most informative items are those nearest the ability being measured

♦Attempts to meet this requirement have been made by Birnbaum (1968, pp. 465-471). Our ideas are 
consistent with his efforts, but we have taken them to their logical and practical conclusion.
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and the least informative are those farthest away, the precision over the target will de
pend not only on the distribution o f the target but also on the shape o f the test. Thus, 
the question o f what is a best test also depends on our taking a position with respect to 
the best distribution o f test item difficulties.

What are the reasonable possibilities? I f  we want to measure a normal target, then a 
test made up o f normally distributed item difficulties ought to produce the best maxi
mization o f precision over the target. This is the conclusion implied in Bimbaum’s analy
sis o f information maximization (Bimbaum, 1968, p. 467).

However, normal tests are clumsy to compose. Normal order statistics can be used to 
define a set o f item difficulties, but this is tedious. More problematic is the odd concep
tion o f measuring implied by an instrument composed o f normally distributed measuring 
elements. A  normal test would be like a yardstick with rulings bunched in the middle and 
spread at the ends. Measuring with such an irregularly ruled yardstick would be awkward. 
In the long run, even for normal targets, our interest becomes spread out evenly over all 
the abilities which might be measured by a test. Equally spaced items are the test shape 
which serves that interest best. That is the way we construct yardsticks. The test design 
corresponding to an evenly ruled yardstick is the uniform test in which items are evenly 
spaced from easiest to hardest (Bimbaum, 1968, p. 466).

Two target distributions, normal and interval, and two test shapes, normal and uni
form, produce four possible combinations o f target and test. Wright and Douglas (1975a) 
investigated all four combinations rather extensively and found the normal test to work 
best on the normal target and the uniform test to work best on the interval target. When 
they compared the normal and uniform tests on normal targets, however, these two test 
shapes differed so little in their measuring precision as to appear equivalent for all prac
tical purposes. Thus the best all purpose test shape is the uniform test.

6.5 THE PRECISION OF A BEST TEST

Now we turn to the response model formulation o f the standard error o f measure
ment SEM so that we can become explicit about which test designs maximize precision 
by minimizing SEM. We must find out how the test design T(H ,W ,L) influences SEM and 
how we can vary the test characteristics o f H, W and L in response to a target specifica
tion G(M,S,D) in order to minimize SEM over that target.

The response model specifies

pfj = exp (bf -d | ) / [ 1 + e x p  (bf - d j ) ]  [6.5.1]

where

Pfj = the probability o f a correct response at f  and i, 

bf = the ability estimate at relative score f  = r/L, 

dj = the calibrated difficulty o f item i.

The measure bf is estimated from a test o f length L with items |d;| for i = 1, L  through 
the equation (for details see Sections 1.5 and 3.7)

L
f = Z p f , / L ,  for f = 1 /L ,(L  -  1 )/L

i
[6.5.2]



DESIGNING TESTS 135

with asymptotic variance

1 /  2  pfi (1 -  pf I ) = SEMf 2 [6 .5 .3 ]
i

This is the square o f  the standard error o f  measurement at relative score f .

We see that SEMf depends on the sum o f pfj (1 -  pf i ) over i. Thus it is a function o f 
bf and all the dj. However, fluctuations in p (1 - p ) are rather mild for p between 0.2 and
0.8. To  expedite insight into the make-up o f SEMf we can reformulate it so that the aver
age value o f  Pfj (1 -  P fj) over i is one component and test length L is the other.

SEMf = | l / [  2  pfi (1 -  Pf.) ] (  % (1 /L ),/2 = (Cf/L )y* [6.5.4]
i

in which

Cf = [ 2 Pfi (1 ~ Pfl)/L] -1

In this expression we factor test length L  out o f SEM in order to find a length-free error 
coefficient Cf .

Resuming our study o f  the operating curve o f  a test given in Figure 6.3.1 we see that 
the least measurable difference in ability LMD is (“iy - )  LOD. Since the least observable

increment in relative score is 1/L, all we need to complete the formulation o f the LMD is 
the derivative o f  b with respect to f  which from Equations 6.5.1 and 6.5.2 is

dh L
—  = [ 2 p fi (1 -  pf i) /L ] _1 [6.5.5.]

But this is our error coefficient C f, thus the least measurable difference at relative score f  
is

LM D f — Cf /L  [6.5.6]

and

SEMf = LM D f ’/a -  (Cf /L )1/a

With SEMf in this form we note that, as far as test shape is concerned, it is Cf which re
quires minimization. This will be true whether we use C min to minimize SEMf given L  or 
to minimize L  given SEMf .

6.6 TH E ERROR C O E FFIC IEN T

N ow  we need to know more about this error coefficient Cf. The essential ingredient 
o f  Cf is the expression Pfj (1 -  P fj). This is the information If; on bf contained in a re
sponse to  item i with difficulty dj (Birnbaum, 1968, p. 460-68). Its average value

l#. = S  lf l/L  = Cf->
I

over the items on a test is the average information about bf per item provided by that 
test. Thus Cf is the reciprocal o f  average test information. The greater the information ob
tained by a test the smaller Cf and hence the smaller SEMf and so the greater the precision.
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What values can we expect Cf to take? We can approach this question in two ways: 
in terms o f the influence o f reasonable values o f (b f -  dj) on pfi and, for uniform tests, in 
terms o f test width W and the boundary probabilities pf l  for i = 1, the easiest item, and 
pfL for i = L, the hardest item. The probability pfi is defined in Equation 6.5.1.

Beginning with reasonable values o f (b f -  dj), we see that when bf = dj and their 
difference is zero, then p fi = 1/2, p fi (1 -  p f i ) = 1/4 and Cf = 4, but when (b f -  d;) = -2  
then pfj = 1/8, p fi (1 -  p f i ) = 1/9 and Cf = 9. (Notice that C f = 9 when (b f -  dj)= +2 and 
Pfi = 7/8 also). Since an average can never be greater than its maximum element nor less 
than its minimum, we can use these figures as bounds for Cf .

When -2  < ( b f -  d|) < + 2

then 1/8<pf j <7/8

and 4 < C f <9 . [6.6.1]

Turning to the bounds we can derive for Cf from the test width W and the boundary 
probabilities pf l  and pfL o f a uniform test, we can use an expression for Cf given W de
rived in Wright and Douglas, 1975a (also Bimbaum, 1968, p. 466).

W = the item difficulty width o f a uniform test,

pf l  = the probability o f a correct response by
bf to the easiest item on the test, and

PfL = the probability o f a correct response by
bf to the hardest item on the test.

When bf is contained within the difficulty boundaries o f the test, and W is greater 
than 4 then 1/2 < (P f j  -  P f L ^  * *-Tw must fall between W and 2W, that is

Cfw = W /(pf l - p fL )

where

W’hen

and

d., < b f < d L 

W > 4

then W < C fw < 2 W . [6.6.2]

It follows from these considerations that SEM = (C/L)1/4 is bounded by

2 /L Vl < S E M  < 3 / L 54

for any test on which

- 2  < ( b f -  dj) <  +2,

and by

(W /L)’7’ < S E M  < (2 W /L ) *

for uniform tests when

W > 4  and d, < b f < d L.
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6.7 TH E DESIGN OF A  BEST TEST

Best test design depends on relating the characteristics o f  test design T (H ,W ,L) to 
the characteristics o f  target G (M ,S,D ) so that the SEM is minimized in the region o f the 
variable where the measurements are expected to  take place. The relationship between 
test and target visible in Figure 6.7.1 makes the general principles o f best test design 
obvious. T o  match test to  target we aim the height o f  the test at the center o f  the target, 
widen the test sufficiently to cover target dispersion and lengthen the test until it pro
vides the precision we require.

For best test design on either interval or normal targets we select a set o f  equivalent 
items (where W = 0) or a set o f  uniform items with the W indicated in Table 6.7.1. Table
6.7.1 gives optimal uniform test widths for normal and interval targets. For example, if  
the target is thought to be approximately normal with presumed standard deviation 
S = 1.5, the optimum test width W is 4. If, however, the target is more uniform in shape 
then the optimum width could be as large as 8. Note that for any value o f S a smaller W 
is always indicated when a normal “ bunched up”  target shape is expected.

Table 6.7.1 also shows the efficiency o f  a simple rule for relating test width W to 
target dispersion S. The rule W = 4S comes close to the optimum W for narrow interval 
targets and fo r wide normal targets. When we are vague about where our target is we are 
also vague about its boundaries. That is just the situation where we would be willing to 
use a normal distribution as the shape o f  our target uncertainty. When our target is nar
row however, that is the time when we are rather sure o f  our target boundaries but, per
haps, not so willing to specify our expectations as to  its precise distribution within these 
narrow boundaries. To  the extent that interval shapes are natural for harrow targets while 
normal shapes are inevitable fo r wide targets, W = 4S is a useful simple rule.

The efficiency o f  this simple rule for normal and interval targets is given in the final 
columns o f Table 6.7.1. There we see that its efficiency is hardly ever less than 90 per 
cent. I f  we cross over from an interval target to a normal target as our expected target 
dispersion exceeds 1.4, then the efficiency is never less them 95 per cent. This means, for 
example, that a simple rule test o f  20 items is never less precise than an optimum test o f  
19 items.

Our investigations have shown that given a target M, S and D there exists an opti
mum test design H and W from which we may generate a unique set o f  L  uniformly distri
buted item parameters j 6 j } .  However, this design is an idealization and cannot be per
fected in practice. Real item banks are finite and each item difficulty is only an estimate 
o f  its corresponding parameter and hence inevitably subject to calibration error. We will 
never be able to  select the exact items stipulated by the best test design {5; } .  Instead we 
must attempt to  select among the items available, a real set o f  |d;[ which comes as close 
as possible to our ideal design jfi j } .

Thus parallel to  the design specification T (H ,W ,L ) we must write the test description 
t(h ,w ,L ) characterizing the actual test j d ;} which we can construct in practice. This raises 
the problem o f  estimating h and w.

The estimated test height h can be determined by the average estimated difficulties 

o f  the test items

h = S d j /L  = d. 16.7.11
i
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J FIGURE 6.7.1 l_
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The estimated test width w can be determined from the range o f  these estimated 
difficulties, or perhaps a bit more precisely from an estimate o f  this range based on the 
tw o easiest items d j and d2, and the two hardest, dL_ j and dL .

w =  [(d L + d L_., -  d2 -  d 1 ) /2 ) [ L / ( L -  2 )] [6 .7 .2 ]

TABLE 6.7.1

OPTIMUM VALUES OF W FOR BEST UNIFORM TESTS
ON NORMAL AND INTERVAL TARGETS

TARGET  
STD. DEV.

S

NORMAL TARGET 
error minimized 

over N (M ,S2)

INTERVAL TARGET 
error minimized 

at (M ±2S )

SIMPLE
RULE*

W =4S

EFFICI

Normal

ENCY**

Interval

.5 0 0 2 94 97

.6 0 0 2

.7 0 2 3 90 100

.8 0 3 3

.9 0 4 4
1.0 0 5 4 89 98
1.1 0 6 4
1.2 1 6 5 92 96
1.3 2 7 5

1.4 3 7 6
1.5 4 8 6 96 91
1.6 5 9 6

1.8 6 10 7 98 87

2.0 8 11 8 99 84

“This Simple Rule is conservative for narrow targets and more practical since available items are 
bound to spread some. It is also close to the normal target optimum for wide targets, which is 
reasonable in the face of substantial target uncertainty.

“ ‘ Efficiency = Cw /  ^4S= M/v !  -̂4S

where = minimum error coefficient for optimum W.
C45 = error coefficient for W = 4S.
Lw = length of optimum test of width W.
L4S = length of equally precise test of width 4S.

6.8 TH E COMPLETE RULES FOR BEST TEST DESIGN

We are now in a position to give explicit, objective and systematic rules for the 
design and use o f  a best possible test. To design test T (H ,W ,L ) for target G(M,S,D):

1. From our hypothesis about M we derive H = M.
2. From our hypothesis about S we derive an optimum W either by consulting 

Table 6.7.1 or by using the simple rule W = 4S.
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3. From our requirements for the measurement precision SEM we seek, we derive 
L  = C/SEM2. A  fairly accurate value for C can be found in Table 6.8.1 which 
gives, at various expected relative scores, f  the value o f C minimized by the W 
chosen in Step 2. Alternatively C can be approximated by one o f the simple 
rules C = 6S or C = 6 from Equations 6.6.1 or 6.6.2.

4. From these H, W and L we generate the design set o f  itemsjs according to the 
formula

5j = H -  (W/2)[ (L — 2i + 1)/L] fori = 1,L

Then for test t(h ,w ,L) from design T(H ,W ,L)

5. We select items d; from our item bank such that they best approximate the set
16;} by minimizing the discrepancy (d; -  6 j).

L
6. We calculate h = S d /L  = d.

i

and w = [(dL + dL _ , -  d2 -  d., )/2] [L /(L  -  2)]

7. We administer the set o f  |dj| as the test t(h,w,L).

TABLE 6.8.1

ERROR COEFFICIENT Cfvv FOR SELECTED TEST WIDTH W AND 
EXPECTED RELATIVE SCORE f FOR UNIFORM TESTS

Expected
Relative
Score

f
0 2

Test Width W 

4 6 8 10

.10 10.9 11.6 13.0 13.7 15.2 16.0

.20 6.3 6.8 7.3 8.4 10.2 11.6

.30 4.8 5.3 5.8 7.3 9.0 10.2

.40 4.0 4.4 5.3 6.8 8.4 10.2

.50 4.0 4.4 5.3 6.8 8.4 10.2

.60 4.0 4.4 5.3 6.8 8.4 10.2

.70 4.8 5.3 5.8 7.3 9.0 10.2

.80 6.3 6.8 7.3 8.4 10.2 11.6

.90 10.9 11.6 13.0 13.7 15.2 16.0

Cf w = W  [1 -e x p -  W)] /  {[1 -  exp ( -  fWt] [1 -  exp ( - (1 - f )  W )]}
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7.1 USING A  V A R IA B L E  TO M AKE MEASURES

This chapter is about turning test scores into measures. But before we show how to 
do this in Sections 7.2 and 7.3, we will review how the test items defining a variable can 
be used to make measures.

T o  make a measure we collect and combine a series o f observed responses in such a 
way that they support an inference as to the position o f  the person on a variable. We sum
marize these observations into a score based on them and this score is used to imply the 
measure o f  the person on the variable. The variable itself, however, is an idea and not a 
direct experience. Its nature can only be inferred from relevant samples o f  carefully selec
ted observations.

The purpose o f  a variable is to provide a basis for comparing persons and general
izing, about their relative status. This purpose requires the achievement o f  objectivity in 
the variable’s definition and in the way measures on it are made. The idea o f the variable 
transcends any particular set o f  observations and the measure on the variable must tran
scend the observed responses on which it is based. Making measures with tests requires 
objectively calibrated test items which provoke the observed item responses and then 
through their calibrations carry these responses onto the scale o f  the variable. It is these 
items that operationally define the variable and bring meaning to the measurement o f the 
person.

D ifferent ways o f  getting a particular score on a test do not generally arouse differ
ent opinions o f  the abilities o f  persons taking the test. When two persons earn the same 
score, we seldom put one person ahead o f the other because they answered particular 
items successfully. This is because we think o f  each score as resulting from the same ex
posure to the same items giving each person’s ability the same opportunity to express 
itself. But whenever we are willing to take identical scores to have equivalent meaning and 
do not care which items are actually answered correctly we are practicing “ item-free”  
measurement. This widespread practice o f item-free measurement within a test implies, 
w ithout further assumption, test-free measurement within a bank o f calibrated items.

A  calibrated item bank provides a resource from which subsets o f items can be 
selected to  form specifically designed tests with optimal characteristics. Scores on these 
tests, although stemming from different combinations o f “ correct”  responses to dif
ferent selections o f items, can nevertheless be converted through the bank calibrations 
into comparable measures. Procedures for obtaining comparable measures for individu
alized tests are given in Sections 7.4 to 7.7.

To  validate these measures, however, we must assess the extent to which the persons 
in question have taken the items in the way we intended them to be taken. The item 
calibrations in the bank come from occasions on which many persons were found to re
spond to  these items in a particular consistent way. This is the context in which the item 
calibrations gained their meaning. The meaning these calibrations now convey depends on 
how the new persons being measured are found to respond to the items. The validity o f

141
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their measures depends on the presence o f acceptable relations between what we actually 
observe and what we expect to observe according to our measurement model and our 
item calibrations. Thus before we can accept any measure as valid, we must examine the 
plausibility o f the pattern o f responses on which that measure is based. The procedure for 
accomplishing the analysis o f person fit necessary to establish measure validity is given in 
Sections 7.8 and 7.9. In these sections we show how to detect person misfit and what 
various kinds o f misfit look like.

Whenever misfit is identified, the next step is to deal with the measurement quality 
control problem this misfit causes. I f  we can identify the circumstances leading to the 
misfit, we may be able to extract from the flawed response record a measure which the 
observed pattern o f responses can sustain. We show how to do this in Section 7.10.

7.2 C O NVERTING  SCORES TO MEASURES BY UCON, PROX AND UFORM

When a person takes a test, the resulting observation o f the person is their test 
score. To see how to get from this test score r to the estimated measure b which it implies 
we refer to the measurement model,

Pj x, = 1} = it-, = exp (0 -  5 j)/[1  + exp (0 -  6,)] [7.2.1]

which specifies how item calibration 6 , and person measure 0 are implied by the person’s 
observed response Xj. The model implies that for each response o f a person to an item we 
“ expect”  an intermediate “ probable”  value which is neither Xj = 1 for a correct response 
nor Xj = 0 for an incorrect response, but somewhere in between them. This “ expected”  
value is the probability nt given in Equation 7.2.1 that x, = 1, and it works just like our 
expectation that fair coins fall half the time heads. Since we “ expect”  a value on each 
coin toss which is half the time heads and half the time tails, even though what happens 
can only be one or the other, our expected value for a particular toss is neither 0 nor 1, 
but half way between at n = V%.

Thus the expected value o f response x f is

El xi i  = »i

the model probability o f a correct answer to item i.
L

Since the test score r = 2 x ( is the sum o f the item responses, the expected value o f r
i

is the sum o f their expectations,

ZEjx,|. s . ,  .

I f  we now substitute in n-, the measure br to be estimated for 0 on the basis o f score r and 
the estimated calibrations|dj} for j s , }  , we have an estimation equation which relates 
r and br as follows

L

r = E  exp (br -  d j)/[1 + exp (br~ dj)] [7.2.2]

From this equation, a person’s score r and the calibrations j dj | o f the items taken, we can 
determine the measure br which they imply.

One way to solve Equation 7.2.2 is to use the UCON procedure described in Chapter
3. The UCON estimated measure is obtained by performing j = 1, m iterations o f

bri+1 = br< + (r -  2  prij ) / [  2  pr,J( 1 “  Pri')l [7.2.3]
i i
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in which

pri* = exp (br' ~ d j) /[1  + exp (brj -  d,)] . [7.2.4]

and the first value o f  br< is

br°  = Cn [ r/ (L-r> ]  .

This UCON procedure requires 3 or 4 iterations and a convergence criterion for successive 
values o f  br' such as

I bri+1 - b ri | <  .01 logits

When the convergence criterion is reached, then the estimated measure is the last value o f 
br, namely

br = bri+1 [7.2.5]

with standard error

sr = [ 2 p ri» (1 -  P , , ' ) ] ' *  [7.2.6]

The UCON procedure responds in detail to the distribution o f item difficulties |dj}
and so estimates a measure br which is completely freed o f  whatever distribution o f item
difficulties characterizes the test. When the items happen to be such that their dj ’s approx
imate a normal distribution d, ~  N (H , o% ), however, then the PROX procedure des
cribed in Chapter 2 is an excellent approximation to the UCON procedure.

The PRO X  estimated measure br can be found without iteration as

br = h +  [1 + (sd2/2 .8 9 )]*E n  [ r / ( L - r ) ]  [7.2.7]

in which
L

h = dj/L = d. 

estimates test height H and

sd2 = ( 2  dj2 -  Ld.2 ) / ( L — 1) 
i

estimates the variance o f  test item difficulty ad2. The standard error for this br is

sr = (1 + s d2 /2 .8 9 ) ’/’ [ L / r ( L - r ) ] *  . [7.2.8]

Since it is often the case that the dj’s o f  a sample o f  new items approximate a nor
mal distribution and since normal samples o f  persons are typical, PROX is often useful 
fo r calibrating new items. In making measures, however, we can take advantage o f already 
calibrated items and spread them uniformly d( ~  U(H, W ) over the range o f ability to be 
measured. Such a uniform test can be described completely by its height H, width W, and 
length L. Its measures can be calculated efficiently by the UFORM procedure described 

in Section 7.3.
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The UFORM estimated measure bf is

bf = h + w (f -  0.5) + 2n (A/B) [7.2.9]

where A = 1 -  exp ( - w f )

B = 1 -  exp [ - w (1 -  f )]
L

and h = Z d / L  = d.
I

estimates test height H,

w = [(dL+ d L_ r  d2-  d, )/2] [L /{L  -  2)]

estimates test width W, and 

f = r/L

is the relative score on the L  item test (Wright and Douglas, 1975a, 21-23).

The standard error for this bf is

s, = [(w /L K C /A B ) ]54 [7.2.10]

where A = 1 -  exp (-w f)

B = 1 -  exp [~w(1 -  f) ]

C = 1 -  exp ( -  w)

To illustrate the use o f these procedures we have chosen nine persons from our 
KCTB sample o f 101. Three o f these persons are at the preschool level, three are at the 
primary level and three are adults.

In Columns 2 through 4 o f Table 7.2.1 we give the sex, age and grade o f these nine 
persons. Column 5 contains their KCTB scores. Their corresponding UCON abilities are 
given in Column 6.

TABLE 7.2.1

NINE PERSONS SELECTED FROM KCTB SAMPLE

Ability
Group

1

Person
Name

2

Sex

3

Age in 
Years

4

School
Grade

5 6
KCTB UCON 
Score Ability

3M M 3 Preschool 1 -5.8
Preschool 6F F 5 Preschool 3 -3 .9

12M M 4 Preschool 5 - 2.8

29M M 6 1 10 -0 .9
Primary 35F F 9 4 11 -0 .5

69M M 8 4 15 1.4

88M M 17+ 12+ 18 3.0
Adult 98F F 16 11 20 4.3

10 1F F 17+ 12+ 21 5.2
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Prior to item calibration our only knowledge o f item difficulties comes from our 
general concept o f  the variable which the items are supposed to define. We do not know 
the actual distribution o f  these items along their variable. Once we have calibrated items, 
however, as with KCTB, then we have a detailed picture o f  where these items are located. 
As a result we can use specially selected subsets o f  these calibrated items to expedite 
measurement.

These specially designed or “ tailored”  tests will vary in length, in difficulty level and 
in range o f ability covered depending on the measurement target. Estimating measures 
from such subsets o f  items can be done efficiently because we can construct the distri
bution o f  item difficulties to suit our purpose. In particular, i f  we want to optimize the 
efficiency o f  our designed tests, we will construct them so that the items are uniformly 
spaced in d ifficu lty over their measurement target. This makes the estimation o f measures 
from scores on these tests entirely manageable by the simple UFORM  procedure.

A ll that is needed to  apply UFORM  are estimates o f the height H, width W and 
length L  o f a test. Then a single conversion table arranged by relative score and test width 
provides all the person measures ever needed. A  second table, similarly arranged, gives the 
coefficients necessary to form the standard errors o f these measures. Table 7.3.1 is an 
abbreviated table o f  these relative measures and Table 7.3.2 is an abbreviated table o f 
their error coefficients. More complete tables for relative measures and their error coeffi
cients are given in Appendix Tables A  and B.

To  use Tables 7.3.1 and 7.3.2 (or Tables A  and B) we need the approximate width w 
o f the test and the person’s relative score f  = r/L. Together they determine the person’s 
relative ability x fw and its corresponding error coefficient Cfw . When we combine this 
information with test height h and test length L, we get the measure bfw = h + x fw and 
its standard error sfw = Cf^ /I/1 .

In order to  use Tables 7.3.1 and 7.3.2 for a particular test, we need estimates o f that 
test’s basic characteristics H, W and L. Test length L is self-evident. Test height H is 
estimated from  the average d ifficu lty level o f  the test’s items, namely h = £ d j h  = d.. The 

estimation o f  test width W, however, can be problematic when an irregular distribution 
o f  item difficulties at the extremes o f  the test cannot be avoided.

Test width can be estimated in various ways. For example 

w , = (dL-  d , )  [ L /( L — 1 )]

w 2 = [(d L+ d u _ 1 - d 2 - d 1 ) / 2 ] [ L / ( L - 2 ) ]

w3 = [(d L+ d L _ 1 + d L _ 2 -  d3 -  d2 -  d, )/3] [L /(L  -  3)]

or

ws = 3.5sd where sd = ( 2  d,2 -  Ld.2 )/(L  -  1)

The method we have found best in practice is w2, the one based on the average d if
ference between the tw o easiest and the two hardest items. This procedure for estimating 
test width is illustrated in Table 7.3.3 where we calculate w for five forms o f the KCTB.

7.3 MEASURES FROM BEST TESTS BY UFORM
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J TABLE 7.3.1 I

RELATIVE MEASURE xfw FOR UNIFORM TESTS

Relative Test Width w
Score

f 2 4 6 8 10

.1 -  2.3 -  2.7 -  3.2 -  3.8 -  4.5

.2 -  1.5 -  1.8 -  2.2 -  2.6 -  3.1

.3 -  0.9 -  1.1 -  1.4 -  1.7 -  2.1

.4 -  0.4 -  0.5 - 0 . 7 -  0.8 -  1.0

.5 0.0 0.0 0.0 0.0 0.0

.6 0.4 0.5 0.7 0.8 1.0

.7 0.9 1.1 1.4 1.7 2.1

.8 1.5 1.8 2.2 2.6 3.1

.9 2.3 2.7 3.2 3.8 4.5

For more detail see Appendix Table A

Test Length: L

Relative Score: f = r/L

Test Height: h = I d , / L
i

Test Width: w = [(dL+ dL_ , -  d2 -  d. )/2] [L /(L  -  2)]

Measure: bf = h + x fw

____________________ | TABLE 7.3.2 ____________________

ERROR COEFFICIENT C * fw FOR UNIFORM TESTS

Relative Test Width w
Score

f 2 4 6 8 10

.1 3.4 3.5 3.7 3.8 4.0

.2 2.6 2.7 2.9 3.2 3.4

.3 2.3 2.4 2.7 3.0 3.2
A 2.1 2.3 2.6 2.9 3.2
.5 2.1 2.3 2.6 2.9 3.2
.6 2.1 2.3 2.6 2.9 3.2
.7 2.3 2.4 2.7 3.0 3.2
.8 2.6 2.7 2.9 3.2 3.4
.9 3.4 3.5 3.7 3.8 4.0

For more detail see Appendix Table B. 

Standard Error: sfvv = C,/4fw /L y'
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_____________________  TABLE 7.3.3___|_____________________

ESTIMATING TEST WIDTH w FOR FIVE KCT FORMS

Test
Form

Test
Length

Two Easiest 
Items

Two Hardest 
Items

Test Width 
Calculated 

w'
Used

w

KCTB 23 - 6 .2 * - 4 .3 5.8 6.3 12.4*
22 -4 .3 -4 .1 5.8 6.3 11.3 11

Preschool 8 - 6.2 - 4 .3 - 2.1 - 2.1 4.2 4

Primary 15 -2 .7 - 2.6 2.0 2.9 5.9 6

Adult 15 -1 .5 - 1.0 5.8 6.3 8.4 8

Pilot 7 - 6.2 -4 .1 4.5 6.3 14.8 15

w '=  [(d L + d L_ ,  ~ d2 -  d , )/2 ] [L /(L -2 )]  

w = w ' rounded to nearest integer.

* Item 3 at -6 .2  is 2 logits below the more or less uniform stream of 22 items from Item 7 at -4 .3
through Item 24 at 6.3. UFO RM  is more accurate with this kind of extreme non-uniformity, when
test width is calculated without the very irregular extreme item.

The first row o f  Table 7.3.3 concerns the 23 items in the KCTB “ item bank.”  From 
these 23 items we have composed three narrow-range test forms focused on three ability 
levels: a Preschool Form o f  8 items, a Primary Form o f  15 items and an Adult Form o f 
15 items, and also one wide-range Pilot Form o f  7 items. The calibrations for the two 
hardest and tw o easiest items for each o f these test forms are given in Table 7.3.3. With 
these calibrations we can estimate the various test widths using the w2 method to calcu
late w ' as

w '=  [(d L + d L_1 -  d2 -  d ,) /2 ]  [ L / ( L -  2)] [7.3.1]

and rounding the w' computed to  the nearest integer for the value o f w used in tables like
7.3.1 and 7.3.2.

N ow  we apply the UCON, PRO X and UFORM  measuring procedures to our sample 
o f nine persons and compare the results. Table 7.3.4 gives the UCON measures and errors 
for the KCTB scores from  1 to 22. Table 7.3.5 gives the nine persons’ KCTB scores and 
the corresponding ability measures and errors for each o f  these scores by UCON, PROX 
and UFORM.

Person 29M, for example, earned a KCTB score o f 10 correct out o f  23 items 
attempted. His UCON ability and error, looked up in Table 7.3.4, are b = -0 .9  and 
s=  0.6
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His PROX ability and error calculated from h = 0, X  = 2.2 and L = 23 are

b = h + X 8n [ r / ( L -  r)]

= 0 + 2.2 2n [10/13]

= - 0.6

s = X [ L/r( L -  r)] *

= 2 .2  [2 3 /1 0  ( 1 3 ) ] 54 

= 0 .9

The value o f the expansion factor X comes from the variance o f item difficulty sd 2 = 11.0 
as

X = (1 + sd2/2 .8 9 ),/4 

= (1 + 11 /2 .89 )*

=  2.2  .

1 -5 .8 1.2
2 -4 .6 1.0
3 -3 .9 0.8
4 -3 .3 0.7
5 - 2.8 0.7
6 -2 .4 0.6
7 - 2.0 0.6
8 - 1.6 0.6
9 -1 .3 0.6

10 -0 .9 0.6
11 -0 .5 0.6
12 - 0.1 0.7
13 0.3 0.7
14 0.8 0.7
15 1.4 0.7
16 1.9 0.8
17 2.4 0.8
18 3.0 0.8
19 3.6 0.8
20 4.3 0.9
21 5.2 1.0
22 6.3 1.2

TABLE 7.3.4 I

UCON ABILITIES AND ERRORS 
FOR THE 23 KCTB ITEMS

Score Ability
r b



M AKING  MEASURES 149



150 BEST TEST DESIGN

His UFORM ability and error are calculated from his relative score f  = r/L= 10/23 = .43 
and the values for x fw and Cf *  found in Tables A  and B o f the appendix with h = 0, 
w = 11 and L = 23. Thus

b = h + x fw , xfw = - 0 . 8  from Table A

= 0 - 0.8 

= -  0.8 .

and

s = Cf£ / L H , Cf *  = 3.3 from Table B

= 3 .3 /23y’

= 0.7 .

The last columns o f Table 7.3.5 give the difference between PROX or UFORM 
and UCON. With the exception o f the PROX measure for Person 3M, no difference is 
larger than 0.4 logits. A ll differences are less than half o f  the standard errors associated 
with their ability measures.

Confidence in the use o f the UFORM Tables 7.3.1 and 7.3.2 or Appendix Tables A  
and B depends on a knowledge o f their functioning over a variety o f  typical test situa
tions. Wright and Douglas (1975a) investigated their functioning with a simulation study 
designed to check on the major threats to the success o f these tables in providing useful 
measures.

The results o f their study are summarized by the bounds given in Table 7.3.6 for the 
extent to which a test can depart in practice from a uniform spacing o f item difficulties 
before measurements based on the assumption o f a uniform test become unacceptable. 
Table 7.3.6 gives the combinations o f H -  0, W, and L within which the bias in estimating 
0 caused by non-uniformity in item difficulty is less than 0.1 logits.

The amount o f leeway shown in Table 7.3.6 may seem surprising, since it allows a 
random item difficulty of, say, d = 2.0 when uniformity calls for 6 = 1.0. But, when h 
and w are calculated from a test’s actual dj5 it is demonstrable that a broad spectrum 
o f test designs is exceptionally robust with respect to random departures from uniformity 
in item difficulty.

Table 7.3.6 shows that as test length increases beyond 30 items, no reasonable 
testing situation risks measurement bias large enough to matter. Tests in the neighbor
hood o f 30 items, o f width less than 8 logits and which come within 1 logit o f their 
target 0 are, for all practical purposes, free from bias caused by random deviations in the 
uniformity o f item calibrations o f magnitude less than 1 logit. Only when tests are as 
short as 10 items, wider than 8 logits and more than 2 logits off-target does the measure
ment bias caused by random non-uniformity o f item difficulty exceed 0.2 logits. This 
means that UFORM measurement tables, even though they are based on the assumption 
o f perfectly uniform tests, can be used to transform scores into measures in most prac
tical situations.
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PERFORMANCE OF UFORM PROCEDURE 
FOR TESTS LESS THAN 8 LOGITS WIDE

_____________ TABLE 7.3.6 _____________

Maximum Maximum Minimum Maximum
Item Bias Off-Target Test Length Measurement Bias

Id, - 5 , | | H - 0t L BIAS BIAS/SEM

1.0 2 10 .2 .4
1 30 .1 .3

0.5 2 10 .1 .2
1 30 .1 .2

BIAS = The average measurement bias in 100 replications of a test in which the random departures
from a uniform distribution of item difficulties are bounded by |d, - 5, |.

7 .4  IN D IV ID U A L IZ E D  TESTIN G

The need fo r individualized testing becomes obvious whenever we encounter a situa
tion in which inappropriate items have been given to a person. The solution to this prob
lem is to  tailor tests to  persons. The construction o f  a bank o f  calibrated items makes the 
efficient implementation o f tailored testing simple. The uniformity o f measurement 
precision near the center o f tests o f  typical height and width shows that we need only 
bring the selected items to  within a logit o f  their intended target to achieve “ good enough”  
tailoring. This can be done in various ways.

Status Tailoring. Information about grade placement or age will often be sufficient 
to tailor a school test. Prior knowledge o f the approximate grade placement o f the target 
group or pupil and o f  the variable’s grade norms can be used to determine an appropriate 
segment o f  items. Normative data in a variety o f  school subjects suggests that typical 
within grade standard deviations are about one logit. When this is so, even a rough idea 
as to a pupil’s within grade quartile provides more than enough information to design a 
best test for that pupil.

Performance Tailoring. Where grade or age information are not sufficient, tailor
ing can be accomplished with a pilot test o f  5 to 10 items spread out enough in difficulty 
to  cover the widest expected target. I f  the pilot test were set up to be self-scoring, then 
pupils could use their number right to guide themselves into a second test specifically 
tailored to  the ability level implied by their p ilot test score.

Self-Tailoring. A  third even more individualized scheme may prove practical in 
many circumstances. The person to  be measured is given a booklet o f  items presented in 
order o f uniformly increasing difficulty and asked to find their own best working level. 
Testing begins when the person finds items hard enough to interest them but easy enough 
to master. Testing continues into more difficult items until the person decides that the 
level o f  difficulty is beyond their ability. The self-tailored test on which this person is 
then measured is the continuous segment o f  items attempted.
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This approach is self-adapting to individual variations in speed, test com fort and 
level o f  productive challenge. The large variety o f  different test segments which can result 
are easy to  handle. The sequence number o f the easiest and hardest items attempted and 
the number o f correct responses between them can be read o ff  a self-scoring answer form 
and converted into a measure and its standard error merely by looking up these three 
statistics in a simple one-page table made to fit with the booklet o f  items used in testing.

Self-tailored testing corresponds to the use o f basal and ceiling levels on individually 
administered tests like the Stanford-Binet. The only difference is that, with the self
tailored test, the segment o f  items administered is determined by the person taking the 
test rather than by an examiner.

7.5 STATUS TAILORING

T o  illustrate status tailoring we allocated our KCTB items to three sequential forms. 
The Preschool Form is aimed at preschool children. The Primary Form is aimed at pri
mary school children. The Adult Form is for persons beyond primary school. Figure
7.5.1 shows the distribution o f  items into these three forms.

The Preschool Form is composed o f the first 10 items. Only Items 3 through 10 

are calibrated because virtually everyone tested so far has gotten Items 1 and 2 correct. 
The Primary Form is composed o f Items 5, 6 and 8 through 20 to  cover the middle range 
o f  the variable. The Adult Form is composed o f Items 11 through 25, the hardest items 
calibrated, and Items 26, 27 and 28 which are so hard that no one tested so far has gotten 
them correct.

Notice that we can include these five “ out-of-bound”  items in our test forms with
out impairing our measurements in any way. This is because we can focus our measure
ments on the portion o f  the test which is both taken by the person and made up o f cali
brated items while letting extreme items continue to work for us as the conceptual 
boundaries o f  the KCT variable. I f  eventually we encounter persons who fail Items 1 or 
2 or who pass Items 26, 27 or 28, then we will also be able to calibrate these items onto 
the K C T  variable and use responses to  them in our measurements.

The items for each o f the three forms and their corresponding item difficulties, 
where known, are given in Table 7.5.1. Below the items in each form are that form ’s 
test characteristics: height h, width w and length L.

These three test forms were applied to the nine persons. Table 7.5.2 shows how 
each person scored on each o f  the forms. Persons 3M and 6F could be measured on only 
the Preschool Form while persons 98F and 101F could be measured on only the Adult 
Form. Person 12M produced a measurable record on the Preschool and Primary Forms. 
Persons 69M and 88M produced measurable records on the Primary and Adult Forms. 
Persons 29M and 35F produced measurable records on all three forms.

For Person 29M with relative score .75 on the Preschool Form (h = -3.3 , w = 4, 
L  = 8 ) we look up x fw = 1.4 and Cf *  = 2.6 in Tables A  and B to find the estimate

b = -3.3 + 1.4 = -1.9 

with standard error

s = 2.6/8= 0.9
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TEST STATISTICS OF THREE SEQUENTIAL FORMS 
MEASURING THE KCT VARIABLE

__________________[ TABLE 7.5.1 |__________________

PRESCHOOL FORM PRIM ARY FORM A D U LT FORM

Item
Name

Item
Difficulty

Item
Name

Item
Difficulty

Item
Name

Item
Difficulty

1 •

2 *

3 -  6.2
4 -4 .1
5 -  2.6 5 - 2.6
6 -  2.7 6 -2 .7
7 - 4 . 3
8 -  2.6 8 - 2.6
9 -  2.1 9 - 2.1

10 -  2.1 10 - 2.1
11 - 1.0 11 -  1.0
12 - 0.1 12 -  0.1
13 - 0 .9 13 - 0 . 9
14 - 0 .5 14 -  0.5
15 -  1.5 15 -  1.5
16 - 0.8 16 -  0.8
17 1.9 17 1.9
18 1.4 18 1.4
19 2.0 19 2.-0
20 2.9 20 2.9

21 3.3
22 3.3
23 4.5
24 6.3
25 5.8

26 * *

27 ##

28 * *

Test Characteristics of the Calibrated Items

Preschool Primary Adult
Form Form Form

Height: h = -3 .3 h = - 0.6 h = 1.8

Width: w = 4 w = 6 w = 8

Length: L = 8* L = 15 L = 15 **

*  Items 1 and 2 were too easy to calibrate 
* *  Items 26, 27 and 28 were too hard to calibrate

Items 1, 2, 26, 27 and 28 cannot be used for measurement because 
their difficulty levels have so far eluded calibration.
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For Person 29M’s relative score o f .47 on the Primary Form (h = -0.6, w = 6, L = 15) 
we look up x fw = -0.2 and Cf *  = 2.6 to find the estimate

b = - 0.6 - 0.2 = - 0.8

with standard error

s = 2.6/15* =0.7 .

For Person 29M’s relative score .27 on the Adult Form (h = 1.8, w = 8, L = 15) we 
look up x fw = -2.0 and Cf *  = 3.0 to estimate

b = 1.8 - 2.0 = - 0.2 

with standard error

s = 3.0/15,/4 = 0.8 .

Even though only one o f the forms taken is best focused on a person and so pro
duces their “ best”  measure, still we can see in Table 7.5.2 that, in spite o f  the wide 
variation in score on different forms, the measures for a given person are, for the most 
part, comparable. Person 29M produces the greatest variation in measures over these 
three forms. His three relative scores o f .75, .47 and .27 vary widely in response to the 
variation in difficulty o f the three forms. According to our model his three measures 
o f -1 .9 , -0 .8 and -0 .2  ought to be statistically equivalent, even though they may seem 
to vary more than we might like. When their variation is evaluated in the light o f their
standard errors o f 0.9, 0.7 and 0.8 we see that the lowest estimate o f -1 .9  on the Pre-

0

school Form plus one o f its standard errors and the highest estimate o f -0 .2 on the 
Adult Form minus one o f its standard errors touch at -1.0.

Table 7.5.3 shows for each person their ability measure on the total KCTB test 
and their ability measure on each o f the three sequential forms. The difference between 
each test form and the KCTB is given at the right o f the table. When these differences 
are compared to the errors associated with them it can be seen that all o f  the differences
are less than half a standard error except for those o f Persons 29M and 98F.

The standard errors for each ability for the KCTB and the three test forms are 
given in Table 7.5.4. These values are stable and consistent over forms for the nine persons.

7.6 PERFORMANCE TA ILO R IN G

To illustrate performance tailoring we developed a Pilot Form o f seven items from 
KCTB. Figure 7.6.1 shows the distribution o f these seven items. They were selected to 
be as uniform as possible over the 15 logit range o f the KCT variable. Table 7.6.1 gives 
their item difficulties and the Pilot Form test characteristics. Height is centered at 0.0. 
The effective width is 15 logits.

To demonstrate performance tailoring with this Pilot Form we will use the per
formances o f our nine persons on the Pilot Form to indicate the sequential form most 
appropriate for measuring each o f them. Then, we will measure them on the indicated 
sequential form and compare their “ performance tailored”  measure with their measure 
based on all 23 KCTB items.
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COMPARING MEASUREMENT PRECISION 
FROM THE SEQUENTIAL FORMS WITH 

MEASUREMENT PRECISION FROM THE KCT BANK

___________________  TABLE 7.5.4 _________________

Ability
Group

Person
Name

KCTB
L=23
Error

Aa

Preschool
L=8

Error

S1

Sequential Forms 
Primary 

L=15 
Error 

s2

Adult
L=15
Error

S3

3M 1 .2 1 .1 *

Preschool 6 F 0.8 0.8

12M 0.7 0.8 0.8

29M 0.6 0.9 0.7 0.8

Primary 35F 0.6 1.2 0.7 0.8

69M 0.7 0.8 0.8

88M 0.8 1.1 0.8

Adult 98F 0.9 0.8 *

10 1F 1.0 0.9 *

* Discrepancies from KCTB minimum & are due to UFORM approximation

In Table 7.6.2 we give for each person their name and KCTB ability. Next we 
give their performance on the Pilot Form. This includes their pilot score r, relative score 
f, ability b, and error s1. Then we show the target regions (from b, -s.,  to b, + s.,) 
implied by each Pilot Form performance. This is followed by the sequential form indi
cated and the resulting ability measure b2 based on their performance on the indicated 
sequential form. Finally, we show the difference (b2 -  fi) between the KCTB measure 
/3 and the sequential form measure b2 together with the KCTB error ŝ  .

For example, Person 29M had a KCTB ability o f -0.9. Using the Pilot Form we 
found an ability o f  +1.1 with a standard error o f 1.5 indicating a target range o f -0.4 to 
2.6. Since the Adult Form is targeted at 1.8 logits, it is the sequential form indicated for 
measuring 29M. On this form he obtained a measure o f -0 .2 logits.

In Table 7.6.2 we see that for seven o f the nine persons the difference between 
their measure on the KCTB and their measure on a performance-tailored best sequential 
form differs by less than half a standard error. Persons 29 M and 98F, however, show dis
crepancies between the measures implied by the KCTB and the sequential test form 
which are o f the order o f one standard error.
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FIG URE 7.6.1

ITEM DISTRIBUTION OF A PILOT FORM FOR
LOCATING PERSONS ON THE KCT VARIABLE

Pilot Form

© © ©©

© © ©

1 1 1 1 1 1 I

Logits - 6.0 -4.0
i i 

- 2.0 0.0

KCT Variable

I
2.0

i
4.0 6.0

_______________________  TABLE 7.6.1________________________

TEST STATISTICS OF A PILOT FORM 
FOR LOCATING PERSONS ON THE KCT VARIABLE

PILO T FORM

Item Name Item Difficulty

3 - 6.2

4 -4 .1

9 - 2.1

12 - 0.1

19 2.0

23 4.5

24 6.3

Height: 

Width: 

Length:

h = 0.0

W = 15

L = 7
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7.7 S ELF-TA ILO R IN G

In order to develop an example o f self-tailoring we return to the original person 
response records o f  l ’s and 0 ’s to see how individualized response patterns might emerge 
from a matrix such as Table 2.3.1. We want to select a record for each o f our nine persons 
that approximates a self-tailored sequence o f items. To  obtain these individualized seg
ments we established basal levels, the point at which a particular person might begin 
taking items, at three successes prior to the first failure. We set ceiling levels, the point at 
which a person might stop taking items, at three successive failures. This produced a 
unique self-tailored sequence o f  items for each o f  our nine persons.

In Table 7.7.1 we show the response patterns o f these self-tailored tests. The first 
item Person 29M missed, for example, was Item 6. Thereafter he continued passing and 
failing items until he failed Items 17, 18, and 19 successively. This defined a self-tailored 
segment fo r him ranging from Item 3 through Item 19. On these 17 items he had a score 
o f r =  10.

In Table 7.7.2 we compute a measure for each person based upon their self-tailored 
test segment. In order to do this computation we determine for each self-tailored segment 
its test characteristics h, w and L. These test characteristics for each person’s self-tailored 
segment are given on the le ft o f  Table 7.7.2.

Thus Person 29M has a relative score o f 10 on his self-tailored segment o f 17 items. 
Since his segment has a width w = 8 this score o f 10 produces a relative ability measure 
o f  0.7 logits which when adjusted for the height o f  his segment (h = -1 .5 ) yields an 
ability estimate o f  -0 .8  with a standard error o f  0.7. This ability estimate is only 0.1 
logits away from his KCTB ability estimate o f -0 .9 with error 0.6. Inspection o f the 
differences given in Table 7.7.2 between measures on each self-tailored segment and 
their corresponding KCTB measures shows that all o f  the measures obtained by self
tailoring are close to the ability measures obtained by the KCTB.

In Table 7.7.3 we show, for each type o f tailoring, the efficiency in item usage for 
each o f  our nine persons. We see that a considerable number o f  items can be saved with
out much diminishing the accuracy o f ability estimates.

Person 29M with a 17 item self-tailored segment requires the most items, yet even 
this segment is 6 items less than the total 23 KCTB items and there is virtually no loss 
o f  measurement accuracy. Person 3M produces almost as precise an estimate with only 
4 self-tailored items as can be obtained for him by using all 23 o f them. This saves 19 
items. Person 3M, however, is at the extreme low  end o f the KCT variable. As a result 
only the four easiest items are relevant to measure his ability. Were additional easy items 
available, we could use them to advantage with Person 3M to improve the precision o f 
his measure.

The self-tailored procedure always achieves the most efficient item utilization. This 
is especially so when making measures at extremes, in this case, beyond ± 4 logits on the 
KCTB ability scale. However, while appreciating this apparent efficiency, we must also 
realize that the items saved are items inappropriate for their target. Our real goal is 
to make measurements sufficiently accurate to be useful. Accuracy depends on the 
number o f  items used which are near enough to the person to be measured so that each 
item makes an adequate contribution to the estimated measure. This means that we want 
items to be within a logit o f  their target. Once the items are brought this near their target, 
all further considerations o f  accuracy, and hence o f efficiency, boil down to the question 
o f  how many o f  these “ tailored”  items it is practical for the person to attempt.
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7.8 PERSON F IT  A N D  Q U A L IT Y  CO NTRO L

During test administration it may appear that an examinee has taken the test as 
planned. Nevertheless, it is always necessary to examine the actual pattern o f responses 
to see i f  this pattern does in fact correspond to reasonable expectations.

Consider, for example, a test o f  10 items administered in increasing order o f d iffi
culty. Table 7.8.1 shows five different ways a score o f five might be achieved on such a 
test. The response patterns o f  Persons A  and B, and even C, seem reasonable. Success 
occurs on the easier items to the le ft and failure occurs on the harder items to the right. 
However, the patterns o f Persons D and E are quite implausible. How could it happen 
that Person D got a score o f  five by succeeding on the five most difficult items while at 
the same time failing the five easiest items? That is so contradictory to our expectations 
for a meaningful test record that we cannot take Person D ’s score o f  five as the basis for 
a valid measure o f  ability. Person D may be smart and careless or dumb and lucky, but 
one thing is certain, Person D does not have the intermediate ability implied by a score 
o f  five.

The response record o f Person E also raises questions. I f  Person E could answer 
items in the middle range o f  difficulty correctly including four o f  the five hardest items, 
why were the three easiest items missed?

The Rasch measurement model leads to a comprehensive yet easily applied pro
cedure fo r evaluating the validity o f  each examinee’s record o f responses. In this pro
cedure the person’s response record is compared with our expectation o f what should 
happen according to  the response model. The procedure uses this comparison to calculate 
a “ f i t ”  statistic which indicates the extent to which the person’s performance on the test 
is in accordance with model expectations.

I f  x vl is the response o f  person v with tentative measure bv to item i with bank 
calibration dj, and i f  x vi = 0 for an incorrect response o r x vi = 1 for a correct one, then 
according to  our measurement model

zv2j = exp [(2xvi -  1 Xdj -  bv)l [7.8.1]

is a standard square residual for evaluating the relationship between the observed response 
x vj and its model expectations given bv and dj. According to expectation this zvi2 should 
be approximately distributed as chi-square with about (L  -  1)/L degrees o f freedom 
where L  is the number o f  items in the test used to estimate bv. I f  the set o f | zu2j } does 
appear to be distributed this way, then we have no internal reason to invalidate bv. But if  
not, we must acknowledge a departure in the data from our expectation and we must see 
what we can do about it.

Every response x vj in the set o f  i = 1 to L taken by person v produces its own almost 
independent zvj2. We can sum this set o f  L  residuals | zvj2 } into an approximate chi- 
square with about (L  -  1) degrees o f  freedom, and for convenience express this chi-square 
as the standardized statistic

tv = [Bn (v„H-(vw-  1)1 [ (L -  D/8]* ~  N (0 ,1 ) [7.8.2]
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J TABLE 7.8.1 |_

FIVE WAYS TO SCORE FIVE ON A TEN ITEM TEST

Easiest
Item

Items in order of increasing difficulty
Hardest
Item

Person #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Score

A 1 1 1 1 0 1 0 0 0 0 5
B 1 1 1 0 1 0 1 0 0 0 5
C 1 1 1 0 0 1 1 0 0 0 5
D 0 0 0 0 0 1 1 1 1 1 5
E 0 0 0 1 0 1 1 0 1 1 5

where vv is the mean square

vv = Z z 2 / ( L - 1 )  . [7.8.3]
i »

The divisor o f 8 in Equation 7.8.2 comes from averaging two opposing standardi
zations o f the mean square v. Thus, if

t ,  = ( v -  1 ) [ ( L -  1 ) / 2 ] *  ~ N (0 ,1 )

and

t2 = [fin (v)] [ ( L “  D/2] 54 ~ N (0 ,1 )

then

t = (t, + t 2 )/2  = [Cn (v) +(v— 1)] [ (L -  1 )/8 ] ’/a ~ N (0 ,1 ) .

In Table 7.8.2 we work out the person fit analysis for the response patterns o f Per
sons 12M, 35F and 88M. Person 12M has a tentative measure o f b = -2.8. For his first
item, d = -6.2, his response is x = 0. These give him a (d -  b) difference o f

( d -  b) = [ - 6 .2 -  (-2 .8 )] = -3 .4

since (2x -  1) = -1

then z2 = exp [(2x -  1) (d — b>] = exp [ - ( -3 .4 )]  = exp (3.4) = 30
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_____________________  TABLE 7.8.3 |______________________

CALCULATING PERSON FIT: RESIDUAL ANALYSIS -------------------

BEST TEST DESIGN

Person
Name

Tentative
Ability

b

Sum of 
Squares 

Z2

Degrees of 
Freedom 

(L— 1)

Mean
Square

V

Fit
Statistic

t

12M -  2.8 35.0 8 4.4 4 .9 *

35F -  0.3 16.8 14 1.2 0.5

88M 3.2 7.3 10 0.7 -0 .7

"Misfit Signal

z2 = exp [ { 2 x -1 ) (d -  b)]

v = 2 z 2/ ( L -  1)

t = [Cn(v) + (v -  1)] [ ( L -  1 ) /8 ] *

For each other response in Person 12M’s tailored segment o f 9 items we have given his x, 
(d -  b) and z2. The residual analysis based upon this row o f z2 ’s for Person 12M leads to

2  z,2 = 35,
i 1

which, for 8 degrees o f freedom, gives a mean square o f v = 4.4 and an approximate 
normal deviate t = 4.9. The residual analyses for these three persons are summarized in 
Table 7.8.3.

Notice in Table 7.8.2 that we have used (d - b) rather than the (b -  d ) used in 
Chapter 4. This is because the (d -  b) form is convenient for the calculation o f z2. When
ever a response is 0, a minus sign is attached to the difference (d -  b) which turns it into 
(b -  d). If, however, we keep this sign change in mind, we can use Table 4.3.3 to deter
mine the values in Table 7.8.2. I f  you use Table 4.3.3, however, you will find that the 
values in Table 7.8.2 are slightly more exact than the values determined from Table 4.3.3. 
The difference is greatest on responses which fit well, but these responses play the small
est role in misfit analysis. The sum o f squares 2  z2 o f 12M based on Table 4.3.3 would be 
33 instead o f the 35 given in Table 7.8.3. The resulting t would be 4.5 instead o f 4.9.

The fit statistic t is distributed more or less normally but with wider tails. In our 
practical experience the popular rejection level o f about two is unnecessarily conservative. 
The general guidelines we currently use for interpreting t as a signal o f  misfit are:
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I f  t  <  3 we accept the measurement o f  the person as probably valid.

I f  3 <  t <  5 we make a careful examination o f the response pattern in order
to identify and consider possible sources o f misfit.

I f  t >  5 we reject the measure as it stands and take whatever steps we can
to extract a “ corrected”  measure from an acceptable segment o f 
the response record, i f  one exists.

The detailed study o f  person misfit o f  course depends on a detailed study o f the approxi
mate normal deviates

zvi = (2 xvi -  1) |exp [(2xvi -  1 )(dj -  bv)/2] j

in the response record in order to  track down the possible sources o f irregularity.

Since those portions o f the 2  z2 which contribute most to t are the large positive 
terms, we can streamline the determination o f record validity by forming a quick statistic 
focused on the most surprising responses. Table 4.3.3 (also given as Appendix Table C) 
shows that the difference between person measure b and item difficulty d must be o f 
the order o f  ± 2.0 before z2 grows larger than 7 or its probability becomes less than 0.12. 
T o  reach a probability fo r  a given response o f  .05 or less we must relax our standard to a 
(d -  b) difference o f  ± 3 producing a z2 o f  20.

I f  we concentrate our attention on surprising responses for which |d -  b| >  3, then 
the actual z2 ’s may be looked up in Table 4.3.3 (or Appendix Table C) and combined 
with an average value o f  1 for all the remaining items in the response segment to produce 
a crude 2  z2 fo r which a crude t can be calculated.

For example, over the 9 responses o f  Person 12M, there is only one surprise. This 
is where (d -  b ) = -3 .4  and z2 = 30. Combining this value o f  30 with eight l ’s for the 
remaining eight items o f  the test gives us a crude 2  z2 = 38 and a crude t = 5.3. This value 
for t is not far from the more exact 4.9 we calculated in Table 7.8.2 and leads us to the 
same conclusion o f  a significant misfit.

In Table 7.8.4 we summarize the residual analysis for all nine persons. For each per
son we give the ability measure and standard error from their self-tailored segment o f 
items. N ext we give the sum o f  squares, degrees o f  freedom, mean square and fit  statistic 
fo r each person’s record. For eight cases we find no evidence o f  misfit and so we take 
their measures as plausible. Only the self-tailored segment o f  Person 12M’s record shows 
a significant misfit. As we saw in Table 7.8.2, this misfit is due entirely to his incorrect 
response on the first and easiest item in his record. The reason for this incorrect response 
might be a failure in test taking or a lapse in functioning. In either case we are still inter
ested in the best possible estimate o f  Person 12M’s ability. The problem o f  extracting the 
best possible measure from a flawed record will be discussed in Section 7.10.
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FIT ANALYSIS OF THE NINE PERSONS 
MEASURED BY SELF-TAILORED TESTS

____________ TABLE 7.8.4 ____________

Group
Person
Name

Self-Tailored Residual Analysis

Ability

b

Error

s

Sum of 
Squares 

l z 2

Degrees of 
Freedom 

(L -1 )

Mean
Square

V

Fit
Statistic

t

3M -5 .7 1.3 1.1 3 0.4 -1 .0
Preschool 6F -3 .8 0.9 2.4 5 0.5 -1 .0

12M -2 .8 0.8 35.0 8 4.4 4 .9 *

29M -0 .8 0.7 17.6 16 1.1 0.3
Primary 35F -0 .3 0.7 16.8 14 1.2 0.5

69M 1.4 0.6 20.0 14 1.4 1.0

88M 3.2 0.9 7.3 10 0.7 -0 .6
Adult 98F 4.4 0.9 2.1 5 0.4 -1 .1

101F 5.2 1.1 1.7 4 0.4 -1 .0

*Misfit Signal

7.9 D IAGNOSING M ISFIT

Consider again the 10 item test with items in order o f increasing difficulty imagined 
for Table 7.8.1. Were we to encounter the pattern produced by Person E, namely

Score

0 0 0 1 0 1 1 0 1 1  5

we would be puzzled and wonder how this person could answer the hard questions cor
rectly, while getting the first three easiest questions incorrect. Were they “ sleeping”  on 
the easy portion o f the test?

On the other hand were we to encounter the response pattern

Score

1 0 1 0 0 0 0 1 1 1  5

our surprise would be as great, but now we might be inclined to explain the irregularity as 
the result o f  lucky “ guessing”  on the three hardest items.

Both the probabilistic nature o f the model and our everyday experience with typical 
response patterns leads us to expect patterns which have a center region o f mixed correct 
and incorrect responses. When we encounter a pattern like

Score

1 1 1 1 1 0 0 0 0 0 5
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it therefore strikes us as “ too good to be true.”  This unexpectedly regular pattern is 
sometimes produced by persons who work very slowly and carefully refusing to proceed 
to  the next item until they have done everything possible to answer the present item cor
rectly. We will refer to this pattern as “ plodding.”

Finally, we can also identify a special form o f “ sleeping”  which might better be 
called “ fumbling”  in which the incorrect responses are bunched at the beginning o f the 
test suggesting that the person had trouble getting started.

To  summarize, we identify the follow ing kinds o f  response patterns:

Score

1 1 1 1 0 1 0 0 0 0  5
“ normal”

1 1 1 0 1 0 1 0 0 0  5
“ sleeping”  or
“ fumbling”  0 0 0 1 0 1 1 0 1 1  5

“ guessing”  1 0 1 0 0 0 0 1 1 1  5

“ plodding”  1 1 1 1 1 0 0 0 0 0  5

In Section 7.8 we identified a misfitting response pattern for Person 12M. Now we 
will investigate misfitting records, such as that o f  Person 12M, to see how the diagnosis o f 
irregular response patterns might be accomplished. The self-tailored response pattern for 
Person 12M, with items in order o f  increasing difficulty, is

Score

0 1 1 1 1 1 0 0 0  5

The evaluation o f  this response pattern in Table 7.8.3 shows a significant misfit, t = 4.9. 
In Table 7.9.1 we show the response pattern for Person 12M again and add for each re
sponse the probability p o f its occurrence under the model. We also give his response 
pattern in terms o f  z ’s in addition to the z2 ’s. When we p lot the z ’s for Person 12M in 
Figure 7.9.1 we see what a “ sleeping”  or “ fumbling”  response pattern looks like. This 
figure displays the segment o f  items responded to. Each item is spaced horizontally along 
the K C T variable according to its difficulty on the logit scale. Its vertical position is 
determined by the person’s standard residual z produced in response to that item.

The observed response pattern o f Person 12M in Figure 7.9.1 shows how the z 
statistic indicates misfit. Item 3 has a z = -5 .5  while the other items have z ’s near their 
expected value o f  zero. The e ffect o f  Item 3 upon the response pattern o f Person 12M 
can be highlighted by considering the tw o alternative patterns given in Table 7.9.1 and 
Figure 7.9.1.

In- alternative pattern A  we retain a score o f  five by exchanging the correct response 
o f  “ 1”  to Item 8 , a relatively hard item, with the incorrect response o f  “ 0”  to Item 3, the 
easiest item attempted. Now  we have the pattern

Score

1 1 1 1 1 0 0 0 0 5
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Person Q 
12M 

(t=4.9) 2

Alternative 
B

(t = 0.1)

Logit
Scale

I F IG UR E 7.9.1 |

DIAGNOSING "SLEEPING'

b = -2 .8

-2
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TABLE 7.9.2

RESIDUAL ANALYSIS FOR "SLEEPING" PATTERN OF PERSON 1 2M

Case Sum of Mean Fit
Description Squares Square Statistic

£ z 2 V t

Person 12M 35.0 4.4 4 .9 *
(b == -2 .8 )

Alternative A 4.6 0.6 -1.0

Alternative B 8.5 1.1 0.1

* Misfit Signal

z2 = exp [(2x -  1 )(d — b>]

V = £  z2/( L — 1)

t [Cn (v) + (v - 1)1 [ L -  1 ) /8 ] *

The misfit statistics for these three patterns are summarized in Table 7.9.2. There we see 
that Alternative A  has a t = -1 .0  instead o f 12M’s t = 4.9.

In Alternative pattern B we exchange the correct response o f “ 1”  to Item 5 with the 
incorrect response o f  “ 0”  to Item 15, the hardest item in the segment. This produces the 
alternate response pattern

Score

1 1 1 1 0 0 0 0 1  5

Interestingly enough, the misfit for the exchange in pattern B is small, only t = 0.1. This is 
because Item 15, with difficulty d = -1.5, is not as hard in relation to Person 12M’s 
ability o f b = -2 .8 as Item 3, with difficulty -6.2, is too easy.

In Tables 7.9.3 and 7.9.4 and Figure 7.9.2 we illustrate “ sleeping”  and “ guessing”  
response patterns using the observed record o f Person 88M. To change his response 
pattern to a sleeping pattern we replace his correct responses to two easy items with 
incorrect responses and shift these two correct responses to Items 17 and 21, thus keep
ing the score r = 6. Now we have the response pattern

Score

0 0 1 1 1 1 1 1 0 0 0  6

which is characteristic o f sleeping. This pattern earns t = 9.1 in Table 7.9.4.
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TABLE 7.9.4

RESID
"SLEEPING" AND "

UAL ANALYSIS FOR
GUESSING" RESPONSE PATTERNS

Case
Description

Sum of 
Squares 

Z z2

Mean
Square

V

Fit
Statistic

t

Person 88M 7.3 0.7 -0 .7
(b = 3.2)

"Sleeping" Pattern 71.6 7.2 9.1*

"Guessing" Pattern 43.0 4.3 5.3*

* Misfit Signal

z2 = exp [(2x — 1)(d — b)]

v = Z z 2/ ( L - 1 )

t = [fin(v) + ( v -  1)] t(L  — D /8 ] 54

To make a guessing pattern we rearrange responses to form

Score

1 1 1 1 0 0 0 0 0 1 1  6

for which t = 5.3 in Table 7.9.4. Figure 7.9.2 compares the previously acceptable response 
pattern o f 88M with these alternative unacceptable response patterns characteristic o f 
sleeping and guessing.

A  sleeping pattern particularly characteristic o f  “ fumbling”  is illustrated in Tables 
7.9.5 and 7.9.6 and Figure 7.9.3 where the acceptable response pattern o f Person 29M 
has been altered to show incorrect responses on the first four items o f his test, namely 
Items 3 through 6. While the effect o f one incorrect response among these first four 
items does not produce significant misfit, as seen in the observed pattern for Person 
29M, i f  we make all four items incorrect to illustrate “ fumbling”  the misfit becomes a 
significant t = 24.1.

The second pattern illustrated in Figure 7.9.3 is “ plodding.”  In this pattern the 
person gets every item correct as far as they go and all remaining items incorrect. This 
can be due to a test-taking style governed by slow and deliberate working habits. While 
sleeping, guessing and fumbling are indicated by positive values o f t, plodding, on the 
other hand, produces a negative t. The negative value indicates that the observed response 
pattern fits even better than we expect. It indicates that even the random variability 
expected by the model is missing!



M AKING  MEASURES 177



FU
M

B
LI

N
G

" 
AN

D 
"P

LO
D

D
IN

G
" 

RE
SP

ON
SE

 
P

A
TT

E
R

N
S

178 BEST TEST DESIGN

T3
O
0)
a
c
0)
3
O'
a)in
E

a
*o
c
(0
0)
E
(0
Z
E

00

5

CD q

5 °

in

*

*  ?

n o>
5 ?

*  ?

«- ° . 
*  7

*

CO
r* W 
*  I

%

CO

*  V

CN

4? ¥*

in
q  O) CN 
cn ©  ’ o *I i

o  w  q  co
CN o ’ * o ’ I I

00 t -  O  CO

o

8  a  
co * r  O o

CN
I

0
1

00^
O

inr  (0 (O (0 ^
o ’ o ’ ’ o*

o
CD CO

0
1

o
o  in  o

co cn co in
O  CN *

00

o

co
CN CO CN 00 
*-’ CO ’

CN CO
m  o

CD
O

o ’

o
co o* l

q  cn o’

co
o  q  cn 
o’ * o’

in
l

A
I

■O 
X X

T

o  CJl r -  O ) CN
d o  • <p

o  w  *■, O) CO
cn  o* o
i i

o  co r  q  m

CN O  di T
oo

#1 **. O
o  V-’

in
q  q  q  q  
d o  o

o
o  o  in  o  
o*

oo cn q  q
o ’ CN ’ v-’

CN*- q  q  o  
o’ o’ *
I

CN CO Is- co 
t-* o o

r-.
cn o  q  q
f- o’ * o’
I

in
q  cn q
V-* o’ * o’

^  o  q  cn 
co o’ * o

I
x

q

*o>
c
2  c
E CL>
3  £

LL (0 
:  CL

o q
CN
l

o  «
CN
I

in
* -  o  CN
o’ ’ Q

1- 0> CO
d •

o q
CN
I

oT

o

?

o q  o

o q o

« - q  
o ’

CNq  q o  o’ ’

in co co

o
co oo 

o  ’ p ’

oo in o

cn w  q  
cn ’ «-*

CNT- q  q o  
d o ’T

cn n  q  q  
!-* o ’ o’ 
I

cn co Is* q
r-’ O’ ’ O’

q  cn q  
T-’ o’ ’ o’

o  q  q  
co o  ’ o ’ I

co
CO (N CO ^

in
q  q  co n ; 

o’ o

co
q  o  q  q  
co o’ ’ o’

oco o  o  q  
in’ o’ o

AI■o 
x  x

I
CN

O)
c
45 C
— ♦-* 0 - (0

AI

II
a

A
12  
7
X

CN



M AKING  MEASURES 179

TABLE 7.9.6

RESIDUAL ANALYSIS FOR
"FUMBLING" AND " PLODDING" RESPONSE PATTERNS

Case
Description

Sum of 
Squares

2  z2

Mean
Square

V

Fit
Statistic

t

Person 29M 17.6 1.1 0.3
(b = -0 .9 )

"Fum bling" Pattern 244.7 15.3 24.1*

"Plodding " Pattern 9.0 0.6 -1.3

*M isfit Signal

z2 = exp [(2x -  1 )(d -  b)]

v = 2  z 2 /(L  -  1) 
i

t = [2n (v) + ( v -  1)] [ ( L — D /8 ] 54
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_____________________ j FIGURE 7.9.3 |____________________
"FUMBLING" AND "PLODDING" RESPONSE PATTERNS

z
3

Z_

3

Z

(Item s arranged In sequence order)
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7.10 CORRECTING A MEASURE

When we detect significant misfit in a response record, diagnose the response pattern 
and identify possible reasons for its occurrence, it is finally necessary to decide if  an im
proved measure can or should be determined. Whether such a statistically “ corrected”  
measure is fair for the person or proper in such circumstances cannot be settled by statis
tics. However, knowing how a measure might be objectively corrected can give us a better 
understanding o f  the possible meaning in a person’s performance.

We have identified the implausibility o f the response o f  Person 12M to the first item 
in his test segment given in Tables 7.9.1 and 7.9.2. Were we to decide that this particular 
response was not typical o f  Person 12M, we might delete the incorrect response to Item 
3 and compute a new ability estimate based on his responses to the remaining eight items. 
This new calculation o f his ability measure is given in Tables 7.10.1 and 7.10.2. The 
corrected measure b; = -2 .2  puts Person 12M about 0.6 logits higher on the KCT variable. 
Figure 7.10.1 shows the effect o f  this correction on the fit o f Person 12M with t' = -0 .8  
instead o f  t = 4.9.

For Person 12M we now have tw o ability estimates, one at b = -2 .8 and one at 
b ' = -2 .2 . Which one we decide is the best estimate depends upon how we evaluate the 
response o f  Person 12M to Item 3. I f  we think that this response is implausible and that 
it is very likely that he would get Item 3 correct, were he to try it again, then we might 
use the corrected b( = -2 .2  as his measure. However, i f  we think, instead, that Person 12M 
got Item 3 incorrect because o f  a significant lapse in functioning, then we might consider 
the b = -2 .8  as better reflecting his position on the KCT variable. Clinical experience with 
the KCT variable supports the probability that this lapse is indeed an indicator o f im
paired functioning and that his incorrect response to Item 3 could be an important ele
ment in his evaluation. Consequently, in this case we might well choose the uncorrected 
measure o f  b = -  2 .8.

In Tables 7.10.3 and 7.10.4 and Figure 7.10.2 we show the correction o f atypical 
“ guessing”  pattern. The person’s responses to successively more difficult items show four 
correct responses followed by five incorrect responses and then by two correct ones! This 
response pattern has a significant misfit o f  t = 5.3. We must ask whether the ability 
estimate b = 3.2 is a good indicator o f this person’s position on the KCT variable. Given 
this person’s string o f  five incorrect responses prior to his last two correct ones, we might 
compute a new estimate with these last two surprising responses removed from the 
record. With this new truncated pattern b' = 1.7 and t' = -  1.2. Statistical analysis alone 
cannot tell which estimate is more appropriate, but it can detect and arrange the available 
information into a concise and objective summary for us to use as part o f  our evaluation 
o f  the person.

Persons who guess may succeed on difficult items more often than their abilities 
would predict especially on multiple choice items. This makes them appear more able, 
especially when many items are too difficult for them, because their frequency o f success 
does not decrease as item difficulty increases. A  similar but opposite effect occurs when 
able persons become careless with easy items making these persons appear less able.

Item responses affected by guessing or carelessness actually reflect the simultaneous 
influence o f two variables. There is the ability to be measured, and in addition, there is 
the tendency to  guess or to become careless. The “ guessingness”  o f  the item may or may 
not be a simple function o f its difficulty on the main variable or, i f  a multiple choice
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FIGURE 7.10.1

CORRECTING THE MEASURE OF PERSON 12M 
FOR "SLEEPING"

Pattern 
Observed for 
Person 12M 
(t = 4.9)

b = -  2.8

b = -2 .2

Corrected 
Pattern for 
Person 12M 
(t* — 0.8)

2
1
0-

-1
-2

H s R s T

Logit Scale -5 -4
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item, o f its distractors. For the person being measured, however, two quite different 
variables are involved. One is their ability, the other is their inclination to guess or their 
carelessness. The measurement o f either variable is threatened by the presence o f the other.

In situations where we think that guessing may be influenced by test format as, for 
example, when we think a person may guess at random over m multiple-choice alterna
tives, we could use the guessing probability o f 1/m as a threshold below which we sup
pose guessing to occur. To guard our measures against this kind o f guessing we can then 
delete all items from a response record which have difficulty greater than b + 8 n (m -  1) 
where b is the person’s initial estimated ability. A fter these deletions we reestimate the 
person’s ability from the remaining items attempted. I f  we do this, we are taking the 
position that when items are so difficult that a person can do better by guessing than by 
trying, then such items should not be used to estimate the person’s ability.

In Tables 7.10.5 and 7.10.6 we show a “ fumbling”  pattern and its correction. Here 
we have an increasingly difficult segment o f 17 items and a response pattern beginning 
with four incorrect responses followed by ten correct responses and then three incorrect 
responses. The pattern seems implausible and significant misfit is identified in t = 23.1. 
Some extraneous factor seems to be influencing the first four responses. It could be a 
problem o f test administration procedures, or o f the examinee’s test behavior. A  cor
rected response pattern could be formed by deleting the first four incorrect responses and 
considering only the continuous segment o f correct responses and the three incorrect 
responses which follow  them.

The corrected responses resulting from this change show a “ plodding”  pattern with 
t = -3.0. This pattern produces a considerably higher ability b' = 1.1 than the original 
b = -0.9. No final decision can be made on this problem, however, until sufficient clinical 
or behavioral information is gathered to clarify the meaning o f those first fout unex
pected incorrect responses.

To summarize the statistical aspects o f our correction strategy:

a. When the majority o f  unexpected responses are “ incorrect”  and t >  3 
then delete all the “ too easy”  items dj <  (bv -  2 )

1. Compute the new ability estimate after the deletion o f these “ too 
easy”  items.

2. Make another analysis o f fit.

b. When the majority o f unexpected responses are “ correct”  and t >  3 
then delete all the “ too hard”  items dj >  [bv + 8 n (m -  1)] where 
m is the number o f alternatives.
1. Compute the new ability estimate after the deletion o f the “ too 

hard”  items.
2. Make another analysis o f fit.



M AKIN G  MEASURES Ig g

c
O) O O q r * CN o o> (0 0)

£
4 t

CN CN
1

o
? ?

o ’
? £

c
o>
4-*00 O q r - q o CO q q

4* CN
1

o Q*
I

0
1

o d
T

(0
a
a></>
c

0 )
orv

4 *

O CO
CN
1

o

-0
.3 o 00

o
I

0
.4 r *

o
T

a
t/>
<u
w
CO
(/>

to
E
a>

(0 CO «— r - o q «— c 4-*

4 *
Q

1
o

T
o o ’ ’ 5 )

<D
.a
4-*

3
O

*♦-

in in

CO
-C ’*5

CD (0 r*. q *— q 4-» 0)

4*: 1 0
1

o o * CN
1

o ’ o 1/)
E
a>
4-»

o
E
o

in <4; in q r_ q > 4-*
L_
0)

■p %
o

l
o *

T
o o

i/i
CO
a>

<£in
c

O O o
Q) 4-» a
o

CO 0 )
i/i
CD

i/i0)c
Q> «— o o o o * " mjt i/i L_
3 o * o ' CN o o ’ C

Z o
a>

4fc 1 l o
a u

DC
E
0)

LO
a>

a>i_
LU CN «— cq CN q q q q k- Q
1 -
1 -

* *

£ 4*:
o '

1 cL.
<D

o ' CN
T

o ' o V-»
o

O

< > CO
a>
L_

>
c

C L £ CL o CO
* 3o f - o 0) q q o r - T - q o

c E
i/i
COKJ *L 4fc 7

c
0 1 i

o u

z j5 a »*- 4_>
in a> O i/i

CO
0)o ' — 1 *o

c O DC CN q q q o q 4-»
CQ <0 *“ CN o ’ o ’ co* o o ’ c . .
s

0)
E

4* 1 1 1 Q)
E

CO

LLl D <0 o> O_ l
ff i
<
1 -

LL Z coi/i 4-»

<

E
0) 6

# CN
|

— CN

|

0
.3

9
0 *- q

CO
l

0
0 q

o ’
in
3
O

c
<D
E

3 05
C J C <D</>
z
h #

8

-2
.6 - q

1

0
.2

0
.4 -

-3
.7

0
0

0
.2 c

o
o

to
3
O
D

O > C
L U c *4-»

CC n <4; o q o
CO
0)

c
o

DC r - CO o o in o ’ o ’ 4—*QJ o

O 4*: 1 1 l c
£_1 "D a)

3

CO
q O co o q

jp
O'
CDtoCN

1
CD CN

4fc 1 3 _Q
3i/>

c COO

in

1 
-2

.6 a>
O q

5
.5

2
.3 ♦-»

o
0)

>
.Q

4*: 0)
a)

T3
o CN q

1

o

o
o

"D
CD
£

_o

CO in *b> o
4fc 1 CN I c

15
E

*4—
CDu.
CO

CO

-6
.2 o

5
.3 o

o ’
q 3

LL
>
CD
A

4* o 4-J
CM 1

0) o(A
c -Q1 A
o
a

to
X CM

N N X A CM
N N

to
a>

DC

(0
CO

c *o>

LX
CN

T
X

CN

C
as

e
D

e
sc

ri
p

tio c
jo
E
3

LL

P
at

te
rn

q
o ’
1
ii
A C

o
rr

e
ct

e
d

P
at

te
rn

II
JO



R
ES

ID
U

A
L 

A
N

A
LY

SI
S 

OF
 

A 
CO

RR
EC

TE
D 

"F
U

M
B

LI
N

G
" 

P
A

TT
E

R
N

190 BEST TEST DESIGN

N ’
CN

O
CO

I

O) O)
<7) c/j

CD (0  a> 3
5  O' CO

CO
LO

CN
O*

CO CO
N*
CN

N ;
CN

o
L.

LU
00
O

CO
7

CO
o’
I

-Q C
E a>3 £ oo

25
00

A<

w .2>, O O '

oo

01

0)
CN

00
CN

O

CN
II

O )

O
I

I
+

ccx

i  £  s I f  I
cc <

r«*

o’
co

.>  a> _ j 
<o O "w
• £ I  oc

oin oo

J1
■S

W
ii
>



8 CHOOSING A SCALE

8.1 INTRODUCTION

Logits are the units o f  measurement we have used thus far. These units flow  directly 
from the logistic response model which specifies the estimated probability o f  a correct 
response by person v to  item i as

pvi = exp (bv -  d j)/[1  + exp(bv -  d,)]

where bv is the estimated ability o f  person v and d; is the estimated difficulty o f  item i. 
It  follows that the odds for a correct response are

Pvi/(1 ~ Pvi) = exp (bv -  dj)

from  which the natural log odds for a correct response becomes

*n [pui/ n  ~ Pv i)l = (bv -  d,) .

These log odds are called “ logits”  and so differences among items and persons are ini
tially in logit units.

The choice o f  a unit is entirely arbitrary, but it is absolutely necessary that some 
unit be chosen. While it is possible to continue to use the initial logits as the units o f 
measurement, this has two disadvantages. Logits involve both negatives and decimals, 
numerical characteristics which might make them unnecessarily confusing.

The KCT logit scale, fo r example, extends from -5 .8  to +5.2. A t the test lengths 
presently available, standard errors o f  measurement can be as low  as 0.6 logits. We could 
add a constant such as 10 to do away with the negatives, but we could not avoid deci
mals by rounding KCT measures in logits to the nearest integer. That rounding would 
produce a least noticeable difference o f almost two standard errors and so could ob
literate differences in measures which might be meaningful. Were we to transform the 
logit scale by first multiplying each value on the scale by 10 and then adding 100, how
ever, we would have a new scale o f  measures from 42 to  152 which would convey the 
same information as the initial logit scale but be free from negatives and decimals.

To  create a new scale that is free from the inconvenience o f decimals we must 
multiply the logits by a “ spacing”  factor large enough so that rounding the new units 
to the nearest integer does not leave behind any useful information. Once this spacing 
factor is chosen and the unit o f  our new scale is determined, we can then add a “ location”  
factor to these new integer units that is large enough so that the lowest possible value 
that can occur is greater than zero. The new scale is defined by determining these two 
factors. The multiplicative factor establishes the spacing, or units, o f the scale. The addi
tive factor establishes the location, or origin, o f  the scale.

The choice o f  an additive factor which locates all possible values above zero is usu
ally easy. The choice o f  a multiplicative factor, however, is worth further consideration. 
I f  we want to  work in integer units, then we must arrange matters so that any differences
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on our new scale smaller than one integer will be meaningless. This requires us to investi
gate the size o f  a least meaningful difference.

In addition to determining a least meaningful difference we may also wish to mark 
easy to remember points like 50, 100 or 500 on our new scale, either at important sub
stantive criteria along the variable or at the typical location o f a normative reference 
group. It is even possible that we will find it useful to relate our new scale unit directly 
to the probabilities for success predicted by the response model. We may, for example, 
want to pinpoint movement through memorable response probabilities like .10, .25, .50, 
.75 and .90 with regular increments o f 5,10, 20, or 25 along our new scale.

Thus, in addition to removing unnecessary negatives and decimals by adding a con
stant and establishing a least meaningful unit larger than one, we may also organize our 
scale around normative, substantive or response probability considerations.

8.2 FORMULAS FOR M A KING  NEW SCALES

In order to be explicit about how a new scale is determined, we will express its 
definition as the linear transformation y = a + 7 x in which x is the logit scale, y  is the new 
scale, a is the location factor for determining the new scale origin and 7 is the spacing fac
tor for determining the new scale unit. We make this transformation linear because we 
want to preserve the interval characteristics o f the logits produced by the Rasch model.

Our new measures B and new calibrations D can be expressed in terms o f their logit 
counterparts b and d as

B = a  + 7  b for persons 

D = a + 7 d  for items

The new standard errors o f  measurement and calibration are

SE(B) =7SE(b) [8.2.3]

S E (D )=7S E (d ) [8.2.4]

This shows how the nature o f the new scale depends on the values for a and y chosen to 
define it.

In passing let us appreciate again that person ability and item difficulty mark loca
tions on one common variable. In constructing this variable we necessarily work with the 
calibrations o f the items which define it. However, when we use the variable to measure 
persons we then work with their measures along the variable defined by these items. What 
a measure tells about a person is the difficulty level o f  the items on which that person is 
likely to succeed half the time. In the same way, what a calibration tells about an item is 
the ability level o f persons who are likely to succeed on that item half the time. Thus, 
were we not reserving the terms “ measure”  to refer to the location o f persons and “ cali
bration”  to refer to the location o f items, we could as well speak o f item difficulty as the 
measure o f the item and o f person ability as the calibration o f  the person.

8.3 THE LEAST MEASURABLE DIFFERENCE

We want to free our new scale from decimals, but we do not want to obliterate use
ful information. As a result, we need to determine the least measurable difference LMD 
on our logit scale so that we can choose a spacing factor 7 that brings this logit LMD to

[8.2.1] 

, [8.2.2 ]
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at least one integer on our new scale. The nearest any two persons can be in observed 
scores, without being the same, is one score apart. This is the least observable difference 
LOD. We need to transform this LOD into its corresponding LMD in logits o f ability.

Logit ability b comes from score r through the response model expectation

r = ^  |  exp (br -  d j)/[1  + exp (br -  dj)] |

As a result LM D must fo llow  LOD at the rate 9b/9r by which scores o f r produce mea
sures o f  b, that is

9b
L M D ^ r  LOD

In order to standardize observations with regard to test length L  we will general
ize from  raw score r to relative score f  = r/L. Then with LOD = 1 in score r and f  = r/L we 
have LOD = 1/L in relative score f  giving

9b 9b
L M D —"gf LOD = jv f -(1 /L ) [8.3.1]

The Rasch response model gives us the expected relation between relative score f  
and estimated response probability pf; o f

f = 2  Pf j / L
i

in which pfj = exp (bf -  d j)/[  1 + exp (bf -  d,)l

Thus, the rate at which relative score f  produces b is

g f  = [ 2  pf j (1 -  P f j)/L ] 1 = Cfw

which turns out to be the error coefficient Cf w discussed in Chapters 6 and 7.

This coefficient is subscripted to test width w as well as relative score f  because, as 
we learned in Chapter 6 , the exact values o f this coefficient depend not only on the 
relation between test d ifficu lty level and person ability expressed in relative score f  = r/L, 
but also on the width in difficu lty covered by the test. This gives us a least measureable 
difference o f

L M D ~ -g f  (1 /L ) = Cfw /L  [8.3.2]

The way Cfw and hence LMD varies with b is pictured in Figure 8.3.1. As the ability 
measure b moves away from test center and/or the test operating curve flattens the 
LMD becomes larger. Fortunately the range o f  values which Cf w will have in practice are 
limited.

W h en  1/8 < P fi < 7 / 8  i = 1. L

th e n  4 < C f w < 9

an d  Cfw = 6

can be used as a convenient single working value for Cfw (see Table 6.8.1 for details). 

This gives us as a working definition o f  the least measurable difference

LMD = 6 /L  [8.3.3]

and implies a spacing factor 

7 l m d >L/6 .
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FIGURE 8.3.1

DETERMINING THE LEAST MEANINGFUL DIFFERENCE

RELATIVE  
SCORE 
f = r/L

MEASURE
b

The LMD approximates the smallest possible meaningful unit since it stems from the 
least observable difference. However, from an estimation point o f view, we might con
sider instead that one standard error o f measurement SEM is actually the least “ believable”  
difference. In logits the SEM is related to the LMD as

SEM = (LMD)* = Cfw* /L *

which suggest the working value

SEM = 2.5/L* [8.3.4]

as an alternate basis for determing the spacing factor

^  s e m  >  L* / 2.5

As long as there are more than six items in our test the SEM determines a smaller
7 than the LMD since

L* /  2.5 <  L/6 when L >  6.

An SEM-based scale, which might be simpler numerically, however, will also be somewhat 
less discriminating in its integer increment than an LMD-based scale. Which choice is 
preferable in any particular situation cannot be settled by statistical considerations. The 
choice will inevitably depend on the use to which the measures are to be put.
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Finally we might consider the least significant difference between independent 
measures, whether replications o f  the same person or comparisons o f different persons, as 
an upper lim it on how crude we could allow our new scale to become. To  determine this 
least significant difference LSD we take

LSDab = (SEMa2 + SEMb2) ’/a =* (2 SEM2 ) *  

and arrive at the working value

LSD = 1.4 SEM = 3 .5 /L *  [8.3.5]

which produces a minimum spacing factor 

^ lsd  >  L54 /  3.5

As long as the number o f  items in our test is greater than six, the relative magnitudes 
o f these bases for determining a lower lim it for the spacing factor are

LMD <  SEM <  LSD.

and so the spacing factors they determine are ordered

^  LMD > ^ S E M  > ^ L S D

Figure 8.3.2 shows the relationships between LMD, SEM and LSD in logits for the
KCTB test o f  23 items. The items, their logit values, score equivalents and LO D ’s at 3 to
4, 12 to  13, 18 to 19 and 20 to 21 along with their corresponding exact LM D ’s, SEM’s 
and LSD ’s are shown.

We can compare the exact values in Figure 8.3.2 with the approximations o f Equa
tions 8.3.3, 8.3.4 and 8.3.5.

Minimum 7 Implied 

LMD = 6 /L  = 6 /23  = 0 .26 4

SEM = 2 .5 /L *  = 2 .5 /4 .8  = 0 .52 2

LSD = 3 .5 /L *  = 3 .5 /4 .8  = 0.73 1.5

Because the 13 logit KCTB is unusually wide, these approximations are smaller than the 
exact values given in Figure 8.3.2. The minimum LMD spacing factor 7 indicated by the 
exact values would be about 2 while the approximations could lead to a minimum 7 o f 4. 
Since we would only be in danger o f losing information i f  the approximations led us to a 
7 o f  less than 2, we see that even in this extreme situation the approximations do not 
mislead us.

8.4 D E F IN IN G  TH E SPACING FACTOR

Once we have defined a least meaningful difference in logits, whether it be the least 
measurable difference LMD (b ) = 6/L to maintain maximum observability or the standard 
error o f  measurement SEM (b ) = 2.5/L’/a and its least significant difference LSD (b ) = 3.5/L’/j 
to maintain statistical reliability, we can use this least meaningful difference to establish a 
spacing factor which will make all interpretable differences on our new scale greater than 
one.

I f  our aim is to  make the least measurable difference in the new scale LMD (B ) >  1, 
then since 7 = LMD (B)/LMD (b ), it follows as in Equation 8.3.3 that

7  l m d  >  L /6 [8.4.11
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is the spacing factor which guarantees that no observable differences will be obliterated 
by rounding to  the nearest integer.

Were we interested instead in keeping the spacing factor 7 as small as possible, in 
order to prevent the presentation o f  scale differences which are statistically unreliable, we 
might set 7 at l/SEM (b) or even l/LSD (b ) that is

7 s e m  = L*/2.5 [8.4.21

or 7 lsd = Lv’ /3.5 [8.4.31

Often, however, there will be other considerations which will lead us to allow 7 to 
become even larger than L /6 in order to reach memorable scale intervals like 5, 10, 20, 
25, 50 or 100.

To  get a rough idea as to typical useful values o f y, we list in Table 8.4.1 values for 
the least meaningful differences which go with various test lengths. In Table 8.4.1 we see 
that we would seldom be satisfied with a spacing factor less than 5 and seldom need one 
larger them 100. Table 8.4.1 suggests that we could work satisfactorily with

7 = 5 for short classroom tests o f 20 or 30 items,

7 = 10 for typical unit tests o f  50 to 60 items 

and y = 20 or 25 for longer tests o f  120 to 150 items.

Only for tests o f  unusual length, such as 1,000 item examinations, would we want 7 = 100.

TAB LE 8.4.1

THE RELATION BETWEEN SPACING FACTORS 
AND TEST LENGTH

Least Meaningful Difference
Approximate Spacing Factor 7 

to Reach an Integer Scale

Test Minimum Maximum Maximum Minimum
Length LMD SEM LSD

L 6 /L 2 .5 /L * 3 .5 /L ’/j 7 l m  d ^ s e m ' L S D

30 0.20 0.46 0.64 @ 2 2

60 0.10 0.32 0.45 © 3 2

120 0.05 0.23 0.32 20 4 3

150 0.04 0.20 0.29 25 3

300 0.02 0.14 0.20 50 7 E
600 0.01 0.10 0.14 100 (10) 7

1200 0.005 0.07 0.10 200 15 ©
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After we decide on 7 we apply it to our person b ’s and item d ’s to place them on 
our new scale as B’s and D ’s. While the relation between LMD and SEM in logits o f 
LM D(b) = [SEM(b) ] 2 is easy to remember, their relation in the new scale also involves 7 . 
Since

LMD(B) = 7LM D (b)

SEM(B) = 7SEM(b) 

but LMD(b) = [SE M (b)]2

it follows that in our new scale

LMD(B) = [SEM (B )]2/7  (8.4.4]

SEM(B) = [7 L M D (B )]*  [8.4.5]

For example, suppose in order to rescale the KCTB shown in Figure 8.3.2 we chose 
7 = 5 .  Then although in logits

LMD(b) = [SE M (b)]2

in our new scale

LMD(B) = [SEM (B )]2/5

and SEM(B) = (5L M D (B )]54

Thus while an SEM(b) o f  0.75 = 0.571,/s goes with an LM D(b) o f 0.57, when 7 = 5  then

LMD(B) = 5 x 0 . 5 7 =  2.81

but SEM(B) = 5 x 0.75 = 3 .7 5 =  (5 x 2.81 )*

8.5. N O R M ATIVE SCALING UNITS: NITS

I f  we want our scale to be based on a normative reference, we can use the observed 
logit mean m and logit standard deviation s o f the elected norming sample as factors in a 
preliminary transformation d' = (d -  m)/s and b' = (b -  m)/s which puts the norming 
group mean at zero and the scale unit at one normative standard deviation.

After this preliminary step, we then choose a spacing factor large enough so that 
meaningful differences become greater than one and at a value which pegs the normative 
standard deviation at some easy to remember unit such as 10, 20, 50 or even 100. A t the 
same time we choose the location factor a so that the mean o f the norming group is also 
easy to recall, for example at 50,100 or 500.

Thus to create a norm based scale o f normative units or NITs, we use for persons 

B = a + 7 ( b - m ) / s  [8.5.1]

and for items

D = a + 7 (d -  m)/s

We then have on the new NITs scale the norming mean M = a and the norming standard 
deviation S = y.
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Using the administration o f the KCTB to the 68 persons older than 8 as norming 
data, we have m = 1.3 and s = 1.9 in logits. I f  we now choose a = 50 and 7 = 10, we have 
a new NITs scale on which

B = 5 0 + 1 0  ( b - 1.31/1.9 [8.5.2]

= 5 0 -  10 (1 .3 /1 .9) + 10b/1.9 
= 43.2 + 5.3b

and
D = 43.2 + 5.3d .

Notice that with this scale definition, the normative mean o f m = 1.3 logits becomes 

M = 4 3 .2 +  5.3 (1.3) = 50 NITs 

I f  we now set b at

m + s= 1.3 + 1.9 = 3.2

then
M + S = 43.2 + 5.3 (3.2) = 60 NITs

so that
M + S - M  = S = 6 0 - 5 0 =  10 NITs 

is the normative standard deviation on the new N IT  scale.

Figure 8.5.1 shows the distribution o f the 68 norming persons. Below their distri
bution are the ability measures for each score in logits and in NITs, and at the bottom are 
the KCTB items which define the variable. In Figure 8.5.1 we see that

30 NITs -* m -  2s, 4 0 N I T s - * m - s ,  5 0 N I T s - » m ,  60 NITs - » m + s  and 70 NITs ■* m + 2s.

8.6. SUBSTANTIVE SCALING UNITS: SITS

We might instead choose to reference our new scale to substantive considerations 
such as a basal and a competency level, an entry and an exit level or some other two- 
position mastery hierarchy. T o  accomplish this we find the difficulty levels d, and d2 
on our logit scale which mark our choice o f  two criteria positions. Then we transform 
these logits to the values D, and D2 on a new substantive scale or SIT which positions 
our criteria at easy to  remember locations such as 50,100 or 200.

I f  d., and d 2 identify the criteria positions in logits and D, and D2 represent the 
desired easy to remember positions o f  these criteria on the new scale, then

a = (D 1 d2 -  D 2 d! )/(d 2 -  d t )

7 = (D2 -  D , ) / ^  -  d , )

and so

B = a  + 7b 

D = a + 7d

become

B = [ (D ,  d2 -  D 2 d , ) + (D 2 -  D , )b] /(d 2 -  d ! ) [8.6.1]

and

D = [(D1 d2 -  D2 d , ) + (D2 -  D, )d] /(d 2 -  d , ) .
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In order to apply this method to the KCTB example, we will designate a basal level 
at the 3-tap median o f  d, = -3 .4  logits and a competency level at the 5-tap median o f 
d2 = 1.4 logits. Then we will arrange to report these criteria at D, = 3 0  for basal and 
D 2 = 50 fo r competency using

a = [30(1.4) -  50 (-3.4)1 /[1 .4  -  (-3 .4 )]

= ( 4 2 +  1701/4.8 

= 44.2

and

7  = ( 5 0 -  3 0 ) / [ ( 1 . 4 - (-3.4) ]

= 20 /4 .8  

= 4.2

which defines our new substantive scale o f SITs as

B = 44.2 + 4.2b [8.6.2)

and

D = 44.2 + 4.2d

This scaling transforms the 3-tap median at d , = - 3.4 logits to D, = 44.2 + 4.2 (-3 .4 ) = 
30 SITs and the 5-tap median at d2 = 1.4 logits to D2 = 44.2 + 4.2 (1.4) = 50 SITs.

In Figure 8.6.1 we show the KCTB items and a substantive definition o f the KCT 
variable by marking the scale positions o f  each median number o f  taps. The ability scores 
in logits and in SITs are given below this substantive definition.

8.7 RESPONSE P R O B A B IL ITY  SCALING UNITS: CHIPS

I f  we eire interested in using our test to predict successful performance response 
rates, then a useful scale for these response probability units or CHIPs might be one that 
identified movement through the response probabilities o f  .10, .25, .50, .75 and .90 with 
easy to remember multiples along the variable like 5 ,10, 20 or 25.

From the response model

p = exp (b -  d) / [1 + exp(b -  d)]

we can determine the differences (b -  d) between person ability and item difficulty which 
lead to  the response probabilities .10, .25, .50, .75 and..90. Solving for (b -  d) in logits we 
have

(b -  d) =fin [p/(1 -  p)]

and hence

Difference Between Person 
Probability Ability and Item Difficulty
of Success in Logits

P b -  d

.10 - 2.2

.25 -1 .1

.50 0.0

.75 1.1

.90 2.2
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T o  determine a new scale in this manner we use

B = a + 7 (b -  c) [8.7.1]

in which

c = either a normative or a substantive choice
of location on the logit scale

7  = an appealing multiple of 1/1.1 = 0.91
such as 5, 10, 20 or 25 leading to the 
7  values of 4.55, 9.1, 18.2 or 22.75.

and

a = 50, 100 or 500.

For KCTB we could make a normative choice o f  c = 1.3 logits at the logit mean o f
the norming group o f  68 persons. We could also set 7 = 4.55 giving us a CHIP spacing o f
5 and choose a to locate the normative mean at 50. Then our CHIP scale formulation 
becomes

B = 50 + 4.55 ( b - 1.3) [8.7.2]

= 44.09 + 4.55b

= 44.1 + 4.6b

Notice that when b is located at the mean o f  the norming group, then 

B = 44.1 + 4 . 6  (1.3) = 50 CHIPs.

Our choice o f  7 = 4.55 produces the following relations between the relative posi
tions o f  a person at B and an item at D

Difference Between Person 
Probability Ability and Item Difficulty
of Success in CHIPs

P B - D

.10 -1 0

.25 -  5

.50 0

.75 5

.90 10

Thus we expect that when any person confronts any item 10 CHIPs below their ability 
the probability fo r a successful response is about .90. A t 5 CHIPs below, the predicted 
success rate is .75. On the other side, i f  an item is 5 CHIPs more difficult than the person
is able, we expect the success rate to  drop to .25 and, when the person is at a disadvantage
o f 10 CHIPs, we expect success only .10 o f  the time.

Were we to  decide on a substantive choice o f scale location, we could use the KCT 
5-tap median o f  1.4 logits as our reference location instead o f the norming sample mean 
at 1.3 logits. Then our CHIP scale formulation would become

D = 50 + 4 . 5 5 ( d - 1.4) [8.7.3]

= 43.63 + 4.55d

= 43.6 + 4.6d

and so

B = 43.6 + 4.6b



Now when b is at the 5-tap median o f 1.4 logits then 

B = 4 3 .6 + 4 .6 (1 .4 ) =50C H IP s.

Table 8.7.1 brings together the logit, N IT, SIT and CHIP scales for the KCTB test.
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_____________| TABLE 8.7.1 j_____________

KCTB SCORES, MEASURES AND ERRORS 
IN LOGITS, NITS, SITS AND CHIPS

Test Score Person Ability Measurement Error

Logits NITs SITs CHIPs Logits NITs SITs CHIPs

22 6.26 76 70 73 1.20 6 5 6
21 5.15 70 66 68 0.99 5 4 5

20 4.31 66 62 64 0.89 5 4 4

19 3.60 62 59 61 0.83 4 3 4

18 2.99 59 57 58 0.78 4 3 4

17 2.42 56 54 55 0.76 4 3 3

16 1.88 53 52 53 0.75 4 3 3

15 1.35 50 50 50 0.74 4 3 3

14 0.84 48 48 48 0.73 4 3 3

13 0.35 45 46 46 0.70 4 3 3

12 -0 .1 0 43 44 44 0.67 4 3 3

11 -0 .51 40 42 42 0.65 3 3 3

10 -0 .9 0 38 40 40 0.63 3 3 3

9 -1 .2 8 36 39 38 0.62 3 3 3

8 -1 .6 5 34 37 37 0.62 3 3 3

7 -2 .0 2 32 36 35 0.63 3 3 3

6 -2 .4 2 30 34 33 0.65 3 3 3

5 -2 .8 5 28 32 31 0.69 4 3 3

4 -3 .3 3 26 30 29 0.74 4 3 3

3 -3 .9 0 23 28 26 0.82 4 3 4

2 -4 .6 5 19 25 23 0.95 5 4 4

1 -5 .7 5 13 20 18 1.23 7 5 6

[8.5.2] NITs B = 43.2 + 5.3b SE(B)= 5.3 SE(b)

[8.6.2] SITs B = 44.2 + 4.2b SE(B)= 4.2 SE(b)

[8.7.2] CHIPs B =44.1 + 4.6b SE(B)= 4.6 SE(b)
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8.8 REPORTING FORMS

The use o f  the Rasch model in test construction can facilitate test interpretation. We 
illustrate this with a reporting form developed for the KCT variable.

Figure 8.8.1 provides a map o f the KCT variable. This map shows all o f the data 
gathered thus far: the KCTB items positioned along the variable by their difficulty levels, 
the substantive criteria o f number o f taps, reverses and distance across blocks and the 
normative information o f  median ages for children and mean and standard deviation for 
adults. The map shows the extent to which the KCT variable has been defined and how 
various possible KCT measures relate to substantive and normative considerations. A  KCT 
report form can be developed from this map.

Figure 8.8.2 is a report form for interpreting individual performance on the KCTB. 
This form, which could be used for a single individual or an entire class, shows the per
formance o f  Persons 12M and 88M as well as a response record identical in score to 88M 
but designed to  show a “ sleeping”  pattern o f several unexpected failures.

Notice that Person 12M with his score o f 5 is located at -2 .8  logits on the KCT 
variable. This puts him halfway between 3 and 4 taps substantively and at the 5 year old 
median normatively. Person 88M, however, at 3.0 logits is functioning at 6 taps sub
stantively and at about one standard deviation above the adult mean normatively.

In many instances it will be useful to detect misfit immediately upon recording a 
person’s responses. The report form in Figure 8.8.2 is ideal for this purpose. Once we 
have recorded the correct or incorrect response to each item at its position on the variable 
and also the consequent position o f  the person on the same variable. Misfit can be esti
mated directly from this completed answer form by means o f  a Misfit Ruler.

Figure 8.8.3 shows a Misfit Ruler scaled in logits. It is marked to indicate the logit 
deviations and a corresponding misfit index y 2 = (z2 -  1) to the left and right o f its 
center. Notice that the unexpected response deviations o f 1, 2, 3 and 4 logits indicate 
y 2 ’s o f  2, 6 , 19 and 54 respectively. By positioning the center o f  the ruler at the point 
on the variable where the person is located and comparing the ruler’s markings with the 
person’s response to each item we can calculate, at a glance, the misfit o f  the person’s 
record.

Whenever an unexpected response is observed, namely a “ 0”  for an incorrect re
sponse in the easy region to the le ft or a “ 1”  for a correct response in the hard region to 
the right, then the corresponding y 2 ’s on the ruler are added to form their sum Q = 2 y 2 
for just the unexpected pieces o f  the record. This sum Q divided by the square root o f  the 
total number o f  items L  on the test yields the misfit statistic

U = Q /L ,/4 [7.8.1]

which, i f  the record fits the response model, is distributed approximately.

U ~ N ( 0 , 2 )  .

This easy to calculate statistic can be used to evaluate misfit. When U >  5 the prob
ability that the record is acceptable has dropped below .01, and it seems reasonable to 
question the validity o f  the record.

In a practical application with a batch o f records to evaluate, it is most reasonable 
to begin with the record fo r which U is maximum and to see i f  the source o f  invalidity
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can be identified and dealt with. Subsequent cases can then be handled in order o f  U 
until all useful explanations o f  the invalidities implied by U >  5 are discovered.

Figure 8.8.2 shows the test segment o f  23 KCTB items in order o f  increasing d if
ficu lty together with three response records. The response records show the correct and 
incorrect responses on the 23 items. T o  evaluate the f it  o f  Person 12M ’s record the center 
o f  the M isfit Ruler is placed at the arrow marking his position a t -2 .8  logits determined 
by his score o f  5. His incorrect response to  Item  3 at -6 .2  logits produces a y 2 o f  about 
30 fo r  Q = 30 and U = 30/2354 = 6.3. This corresponds to  a t = 4.5 which is very close to  
the more exact value o f  t given in Table 7.8.3. Again, we see that this response is too  
improbable to  be accepted as part o f  a valid measure o f  Person 12M.

The M isfit Ruler has also been applied to  Person 88M and to  the “ Sleeping”  pattern 
with the same score o f  18. The pattern fo r Person 88M produces a response record that 
yields a 2  y 2 = 2, and U = 0.4. The “ sleeping”  patterns, however, produces a

2  y 2 = 46  + 20  + 2 + 3 = 71

and so a

U = 7 1 /2 3 *  = 14.8 .

These results are summarized in Table 8.8.1

TABLE 8.8.1

QUICK ANALYSIS OF 
RESPONSE RECORD V A LID ITY

Person Score

Sum of 
Unexpected 
Responses
Q = 2  y2

Fit
Statistic

U = Q /L *

12M
88M
"Sleeping" Pattern

5
18
18

30
2

46 + 20 + 2 + 3 = 71

6 .3 *
0.4

14.8*

L =  23 ‘ Misfit
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FIGURE 8.8.3 

MISFIT RULER

Unexpected "O's" 
Items too easy 
to get incorrect

f+ + -B -+

Person’s Ability

+ + + -H —I- - H - f

Unexpected "V s"  
Items too hard 

to get correct

-H -+
- 4 - 3 - 2 -1 Logits

5442 32 25 19 15 1 1 8 6 5 3 2  2 y2 2 2 3 5 6 8 11 15 1 9 25 32 42 54
.02 .05 .1 .2 P .2 .1 .05 .02

HOW TO  USE THE M IS F IT  RULER:

1. Position the items on metric record form corresponding to ruler metric.
2. Record person’s responses to items on record form.
3. Locate person's ability position on record form by counting score r and positioning it between the 

rth and the (r + 1)th item locations.
4. Place center of Misfit Ruler at person's ability position.
5. Sum y for all unexpected responses, " 0 's" to the left and "1 's" to the right to form Q.
6. Let L equal the total number of items.
7. Calculate misfit statistic U = Q / L^2.
8. If U >  5 examine the person's record further for sources of invalidity.

P is the improbability of each response.





APPENDICES

TAB LE  A 211 & 212

TAB LE  B 213 & 214

TAB LE  C 215

2 1 1



2 1 2 APPENDICES

I TABLE A L________________________

RELATIVE ABILITY xfw FOR UNIFORM TESTS IN LOGITS

Relative
Score

Test Width w Relative
Score

f > .5 0 1 2 3 4 5 6 7 8 f < .5 0

.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .50

.51 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 .49

.52 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 .48

.53 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 .47

.54 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 .46

.55 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 .45

.56 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 .44

.57 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.6 .43

.58 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 .42

.59 0.4 0.4 0.4 0.5 0.5 0.6 0.7 0.7 .41

.60 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 .40

.61 0.5 0.5 0.5 0.6 0.7 0.7 0.8 0.9 .39

.62 0.5 0.5 0.6 0.6 0.7 0.8 0.9 1.0 .38

.63 0.5 0.6 0.6 0.7 0.8 0.9 1.0 1.1 .37

.64 0.6 0.6 0.7 0.7 0.8 0.9 1.1 1.2 .36

.65 0.6 0.7 0.7 0.8 0.9 1.0 1.1 1.3 .35

.66 0.7 0.7 0.8 0.9 1.0 1.1 1.2 1.3 .34

.67 0.7 0.8 0.8 0.9 1.0 1.2 1.3 1.4 .33

.68 0.8 0.8 0.9 1.0 1.1 1.2 1.4 1.5 .32

.69 0.8 0.9 0.9 1.0 1.2 1.3 1.4 1.6 .31

.70 0.9 0.9 1.0 1.1 1.2 1.4 1.5 1.7 .30

.71 0.9 1.0 1.0 1.2 1.3 1.4 1.6 1.8 .29

.72 1.0 1.0 1.1 1.2 1.4 1.5 1.7 1.9 .28

.73 1.0 1.1 1.2 1.3 1.4 1.6 1.8 2.0 .27

.74 1.1 1.1 1.2 1.3 1.5 1.7 1.9 2.1 .26

.75 1.1 1.2 1.3 1.4 1.6 1.7 1.9 2.1 .25

.76 1.2 1.2 1.3 1.5 1.6 1.8 2.0 2.2 .24

.77 1.2 1.3 1.4 1.5 1.7 1.9 2.1 2.3 .23

.78 1.3 1.4 1.5 1.6 1.8 2.0 2.2 2.4 .22

.79 1.3 1.4 1.5 1.7 1.9 2.1 2.3 2.5 .21

.80 1.4 1.5 1.6 1.8 1.9 2.2 2.4 2.6 .20

.81 1.5 1.6 1.7 1.8 2.0 2.2 2.5 2.7 .19

.82 1.5 1.6 1.7 1.9 2.1 2.3 2.6 2.8 .18

.83 1.6 1.7 1.8 2.0 2.2 2.4 2.7 2.9 .17

.84 1.7 1.8 1.9 2.1 2.3 2.5 2.8 3.0 .16

.85 1.8 1.8 2.0 2.2 2.4 2.6 2.9 3.2 .15

.86 1.8 1.9 2.1 2.3 2.5 2.7 3.0 3.3 .14

.87 1.9 2.0 2.2 2.4 2.6 2.8 3.1 3.4 .13

.88 2.0 2.1 2.3 2.5 2.7 2.9 3.2 3.5 .12

.89 2.1 2.2 2.4 2.6 2.8 3.1 3.3 3.7 .11

.90 2.2 2.3 2.5 2.7 2.9 3.2 3.5 3.8 .10

.91 2.3 2.4 2.6 2.8 3.1 3.3 3.6 3.9 .09

.92 2.5 2.6 2.7 2.9 3.2 3.5 3.8 4.1 .08

.93 2.6 2.7 2.9 3.1 3.4 3.6 4.0 4.3 .07

.94 2.8 2.9 3.1 3.3 3.5 3.8 4.1 4.5 .06

.95 3.0 3.1 3.3 3.5 3.7 4.0 4.4 4.7 .05

.96 3.2 3.3 3.5 3.7 4.0 4.3 4.6 5.0 .04

.97 3.5 3.6 3.8 4.0 4.3 4.6 5.0 5.3 .03

.98 3.9 4.0 4.2 4.5 4.7 5.1 5.4 5.8 .02

.99 4.6 4.8 4.9 5.2 5.5 5.8 6.1 6.5 .01
f > .5 0 f < .5 0
Measure 

b, =h + x
f  W

Test Score: r Test Length: L

Measure 
bf = h -  xfw

Relative Score: f = r/L

Test Height: h = 2  d /L Test Width: w = [ (dL + dL- i  -  d2 _ di )/2] [L /{L  -  2)]
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 J TABLE A I--------------------------------------
RELATIVE ABIL ITY xfw FOR UNIFORM TESTS IN LOGITS 

(Continued)

Relative
Score

Test Width w Relative
Score

f > . 5 0 8 9 10 11 12 13 14 15 f < .5 0
.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .50
.51 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 .49
.52 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 .48
.53 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 .47
.54 0.3 0.4 0.4 0.4 0.5 0.5 0.6 0.6 .46
.55 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 .45
.56 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 .44
.57 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.1 .43
.58 0.7 0.7 0.8 0.9 1.0 1.0 1.1 1.2 .42
.59 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 .41
.60 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 .40
.61 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7 .39
.62 1.0 1.1 1.2 1.3 1.4 1.6 1.7 1.8 .38
.63 1.1 1.2 1.3 1.4 1.6 1.7 1.8 2.0 .37
.64 1.2 1.3 1.4 1.6 1.7 1.8 2.0 2.1 .36
.65 1.3 1.4 1.5 1.7 1.8 2.0 2.1 2.3 .35
.66 1.3 1.5 1.6 1.8 1.9 2.1 2.2 2.4 .34
.67 1.4 1.6 1.7 1.9 2.1 2.2 2.4 2.6 .33
.68 1.5 1.7 1.8 2.0 2.2 2.4 2.5 2.7 .32
.69 1.6 1.8 1.9 2.1 2.3 2.5 2.7 2.9 .31
.70 1.7 1.9 2.1 2.2 2.4 2.6 2.8 3.0 .30
.71 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 .29
.72 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 .28
.73 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.5 .27
.74 2.1 2.3 2.5 2.7 2.9 3.2 3.4 3.6 .26
.75 2.1 2.4 2.6 2.8 3.1 3.3 3.5 3.8 .25
.76 2.2 2.5 2.7 2.9 3.2 3.4 3.7 3.9 .24
.77 2.3 2.6 2.8 3.1 3.3 3.6 3.8 4.1 .23
.78 2.4 2.7 2.9 3.2 3.4 3.7 4.0 4.2 .22
.79 2.5 2.8 3.0 3.3 3.6 3.8 4.1 4.4 .21
.80 2.6 2.9 3.1 3.4 3.7 4.0 4.3 4.6 .20
.81 2.7 3.0 3.3 3.5 3.8 4.1 4.4 4.7 .19
.82 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 .18
.83 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5.0 .17
.84 3.0 3.3 3.6 3.9 4.2 4.6 4.9 5.2 .16
.85 3.2 3.4 3.8 4.1 4.4 4.7 5.0 5.4 .15
.86 3.3 3.6 3.9 4.2 4.5 4.9 5.2 5.5 .14
.87 3.4 3.7 4.0 4.3 4.7 5.0 5.4 5.7 .13
.88 3.5 3.8 4.2 4.5 4.8 5.2 5.5 5.9 .12
.89 3.7 4.0 4.3 4.6 5.0 5.3 5.7 6.1 .11
.90 3.8 4.1 4.5 4.8 5.2 5.5 5.9 6.3 .10
.91 3.9 4.3 4.6 5.0 5.3 5.7 6.1 6.5 .09
.92 4.1 4.4 4.8 5.2 5.5 5.9 6.3 6.7 .08
.93 4.3 4.6 5.0 5.4 5.7 6.1 6.5 6.9 .07
.94 4.5 4.8 5.2 5.6 5.9 6.3 6.7 7.1 .06
.95 4.7 5.1 5.4 5.8 6.2 6.6 7.0 7.4 .05
.96 5.0 5.3 5.7 6.1 6.5 6.9 7.3 7.7 .04
.97 5.3 5.7 6.1 6.4 6.8 7.2 7.7 8.1 .03
.98 5.8 6.1 6.5 6.9 7.3 7.7 8.1 8.6 .02
.99 6.5 6.9 7.3 7.7 8.1 8.5 8.9 9.3 .01

f  > .5 0 f < .5 0
Measure

bf = h + * fvv
Test Score: r Test Length: L

Measure 
bf = h -  xtw

Relative Score: f = r/L

Test Height: h = 2  d;/L Test Width: w = [(d L + d i_-l “ ^2 ~ ^1 ) / 2 ) ( L / ( L  2)]
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__________________________ I TABLE B |_________________________

ERROR COEFFICIENT Cf *  FOR UNIFORM TESTS IN LOGITS

Relative Test Width w Relative
Score Score

f  > .5 0 1 2 3 4 5 6 7 8 f < .5 0

.50 2.0 2,1 2.2 2.3 2.4 2.6 2.7 2.9 .50

.51 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .49

.52 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .48

.53 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .47

.54 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .46

.55 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .45

.56 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .44

.57 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .43

.58 2.0 2.1 2.2 2.3 2.4 2.6 2.7 2.9 .42

.59 2.1 2.1 2.2 2.3 2.5 2.6 2.7 2.9 .41

.60 2.1 2.1 2.2 2.3 2.5 2.6 2.7 2.9 .40

.61 2.1 2.1 2.2 2.3 2.5 2.6 2.8 2.9 .39

.62 2.1 2.1 2.2 2.3 2.5 2.6 2.8 2.9 .38

.63 2.1 2.1 2.2 2.4 2.5 2.6 2.8 2.9 .37

.64 2.1 2.2 2.2 2.4 2.5 2.6 2.8 2.9 .36

.65 2.1 2.2 2.3 2.4 2.5 2.6 2.8 2.9 .35

.66 2.1 2.2 2.3 2.4 2.5 2.6 2.8 2.9 .34

.67 2.1 2.2 2.3 2.4 2.5 2.7 2.8 2.9 .33

.68 2.2 2.2 2.3 2.4 2.5 2.7 2.8 3.0 .32

.69 2.2 2.2 2.3 2.4 2.6 2.7 2.8 3.0 .31

.70 2.2 2.3 2.3 2.4 2.6 2.7 2.8 3.0 .30

.71 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3.0 .29

.72 2.2 2.3 2.4 2.5 2.6 2.7 2.9 3.0 .28

.73 2.3 2.3 2.4 2.5 2.6 2.7 2.9 3.0 .27

.74 2.3 2.3 2.4 2.5 2.6 2.8 2.9 3.0 .26

.75 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 .25

.76 2.4 2.4 2.5 2.6 2.7 2.8 2.9 3.1 .24

.77 2.4 2.4 2.5 2.6 2.7 2.8 3.0 3.1 .23

.78 2.4 2.5 2.6 2.6 2.8 2.9 3.0 3.1 .22

.79 2.5 2.5 2.6 2.7 2.8 2.9 3.0 3.1 .21

.80 2.5 2.6 2.6 2.7 2.8 2.9 3.1 3.2 .20

.81 2.6 2.6 2.7 2.8 2.9 3.0 3.1 3.2 .19

.82 2.6 2.7 2.7 2.8 2.9 3.0 3.1 3.2 .18

.83 2.7 2.7 2.8 2.9 3.0 3.1 3.2 3.3 .17

.84 2.7 2.8 2.9 2.9 3.0 3.1 3.2 3.3 .16

.85 2.8 2.9 2.9 3.0 3.1 3.2 3.3 3.4 .15

.86 2.9 2.9 3.0 3.1 3.2 3.3 3.4 3.4 .14

.87 3.0 3.0 3.1 3.2 3.2 3.3 3.4 3.5 .13

.88 3.1 3.1 3.2 3.3 3.3 3.4 3.5 3.6 .12

.89 3.2 3.2 3.3 3.4 3.4 3.5 3.6 3.7 .11

.90 3.3 3.4 3.4 3.5 3.6 3.7 3.7 3.8 .10

.91 3.5 3.5 3.6 3.7 3.7 3.8 3.9 3.9 .09

.92 3.7 3.7 3.8 3.8 3.9 4.0 4.0 4.1 .08

.93 3.9 4.0 4.0 4.1 4.1 4.2 4.3 4.3 .07

.94 4.2 4.2 4.3 4.3 4.4 4.5 4.5 4.6 .06

.95 4.6 4.6 4.7 4.7 4.8 4.8 4.9 4.9 .05

.96 5.1 5.1 5.2 5.2 5.3 5.3 5.4 5.4 .04

.97 5.9 5.9 5.9 6.0 6.0 6.0 6.1 6.1 .03

.98 7.1 7.2 7.2 7.2 7.3 7.3 7.3 7.4 .02

.99 10.1 10.1 10.1 10.1 10.1 10.2 10.2 10.2 .01

f > .5 0 | f  < .5 0

Test Score: r Test Length: L Relative Score: f = r/L

L
Test Height: h = ^  d ,/L  Test Width: w = [(dL + dL_ 1 -  d2 -  d i )/2] [L /(L  -  2)]

Standard Error: sfuv= C f^ /L 14
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TABLE B
ERROR COEFFICIENT Cf *  FOR UNIFORM TESTS IN LOGITS

(Continued)

Relative
Score

Test Width w Relative

f > . 5 0 8 9 10 11 12 13 14 15 f < .5 0
.50 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .50
.51 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .49
.52 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .48
.53 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .47
.54 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .46
.55 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .45
.56 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .44
.57 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .43
.58 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .42
.59 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .41
.60 2.9 3.0 3.2 3.3 3.5 3.6 3.7 3.9 .40
.61 2.9 3.1 3.2 3.3 3.5 3.6 3.8 3.9 .39
.62 2.9 3.1 3.2 3.3 3.5 3.6 3.8 3.9 .38
.63 2.9 3.1 3.2 3.3 3.5 3.6 3.8 3.9 .37
.64 2.9 3.1 3.2 3.4 3.5 3.6 3.8 3.9 .36
.65 2.9 3.1 3.2 3.4 3.5 3.6 3.8 3.9 .35
.66 2.9 3.1 3.2 3.4 3.5 3.6 3.8 3.9 .34
.67 2.9 3.1 3.2 3.4 3.5 3.6 3.8 3.9 .33
.68 3.0 3.1 3.2 3.4 3.5 3.6 3.8 3.9 .32
.69 3.0 3.1 3.2 3.4 3.5 3.6 3.8 3.9 .31
.70 3.0 3.1 3.2 3.4 3.5 3.6 3.8 3.9 .30
.71 3.0 3.1 3.3 3.4 3.5 3.6 3.8 3.9 .29
.72 3.0 3.1 3.3 3.4 3.5 3.7 3.8 3.9 .28
.73 3.0 3.1 3.3 3.4 3.5 3.7 3.8 3.9 .27
.74 3.0 3.2 3.3 3.4 3.5 3.7 3.8 3.9 .26
.75 3.0 3.2 3.3 3.4 3.6 3.7 3.8 3.9 .25
.76 3.1 3.2 3.3 3.4 3.6 3.7 3.8 3.9 .24
.77 3.1 3.2 3.3 3.5 3.6 3.7 3.8 3.9 .23
.78 3.1 3.2 3.4 3.5 3.6 3.7 3.8 3.9 .22
.79 3.1 3.3 3.4 3.5 3.6 3.7 3.8 4.0 .21
.80 3.2 3.3 3.4 3.5 3.6 3.7 3.9 4.0 .20
.81 3.2 3.3 3.4 3.5 3.7 3.8 3.9 4.0 .19
.82 3.2 3.4 3.5 3.6 3.7 3.8 3.9 4.0 .18
.83 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 .17
.84 3.3 3.4 3.5 3.6 3.7 3.9 4.0 4.1 .16
.85 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 .15
.86 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 .14
.87 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 .13
.88 3.6 3.7 3.8 3.9 4.0 4.1 4.1 4.2 .12
.89 3.7 3.8 3.9 4.0 4.0 4.1 4.2 4.3 .11
.90 3.8 3.9 4.0 4.1 4.1 4.2 4.3 4.4 .10
.91 3.9 4.0 4.1 4.2 4.3 4.3 4.4 4.5 .09
.92 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.6 .08
.93 4.3 4.4 4.5 4.5 4.6 4.7 4.7 4.8 .07
.94 4.6 4.6 4.7 4.8 4.8 4.9 5.0 5.0 .06
.95 4.9 5.0 5.0 5.1 5.2 5.2 5.3 5.3 .05
.96 5.4 5.5 5.5 5.6 5.6 5.7 5.7 5.8 .04
.97 6.1 6.2 6.2 6.3 6.3 6.3 6.4 6.4 .03
.98 7.4 7.4 7.4 7.5 7.5 7.5 7.6 7.6 .02
.99 10.2 10.2 10.3 10.3 10.3 10.3 10.4 10.4 .01

f  > .5 0 f < .5 0

Test Score: r

Test Height: h = 2  d j/L

Test Length: L Relative Score: f = r/L

Test Width: w = [(d L + dL- i  “  d2 ~ di )/2] [L /(L  2)] 

Standard Error: Sfw = Cfv^ /L %
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J TABLE C I

MISFIT STATISTICS

Difference 
Between 

Person Ability 
and

Item Difficulty 

(b-d)

Number of Items 
Needed To 
Maintain 

Equal Precision

L= 1000/1

Relative
Squared Improbability Efficiency 

Standardized of the of the 
Residual Response Observation

z2=exp (b-d) p=1/(1+z2 ) l=400p (1—p)

-0 .6 , 0.3 .50 100 10
0.4, 0.8 2 .33 90 11
0.9, 1.2 3 .25 75 13
1.3, 1.4 4 .20 65 15
1.5, 1.4 5 .17 55 18
1 .7 ,1 .8 6 .14 50 20
1.9, 2.0 7 .12 45 22

2.1 8 .11 40 25
2.2 9 .10 36 28
2.3 10 .09 33 30
2.4 11 .08 31 32
2.5 12 .08 28 36
2.6 14 .07 25 40
2.7 15 .06 23 43
2.8 17 .06 21 48
2.9 18 .05 20 50
3.0 20 .05 18 55 '

3.1 22 .04 16 61
3.2 25 .04 15 66
3.3 27 .04 14 73
3.4 30 .03 12 83
3.5 33 .03 11 91
3.6 37 .03 10 100
3.7 41 .02 9 106
3.8 45 .02 9 117
3.9 50 .02 8 129
4.0 55 .02 7 142

4.1 60 .02 6 156
4.2 67 .02 6 172
4.3 74 .01 5 189
4.4 81 .01 5 209
4.5 90 .01 4 230
4.6 99 .01 4 254
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INDEX

Ability |3 and b (see Person ability measure) 
Additive scale factor a  (see Scale additive factor) 
Analysis o f fit (see F it)

Bank (see Item bank building)
Best test design (see Test design)
Beta /} (see Person ability measure)
B ICAL, 46 - 54 

control, 46 - 47  
output, 46, 48 • 52, 54

Calibration 5 and d (see Item difficulty calibra
tion)

Chain, 99
Chicago probability unit (see Scale CHIP)
CHIP (see Scale CHIP)
Common item equating, 108 -1 0 9 ,1 1 2 -1 1 8  
Common person equating, 106-112  
Computing algorithms:

B ICAL, 46 - 54 
PROX, 61 - 62

hand example, 30 - 44 
computer example, 46 - 55 

UCON, 62 - 65 
UFORM, 143 -151 

tables, 146, 212, 214 
Correcting a measure, 181 - 190 
Connecting two tests, 96 - 98 (see Linking test 

forms)
Control lines for identity plots, 94 - 95 
Criterion referencing, 118 - 121, 199 - 202, 204, 

206 - 207 
Crude fit (see F it)

Data matrix, 10, 18, 31, 33, 68, 107 - 109 
Degrees o f  freedom, 23 - 24, 71, 74, 77, 79 

crude fit, 125 
item fit, 24, 77, 79 
link analysis, 96
person fit, 23, 76 - 77, 79, 165 - 168 

Delta 6 (see Item difficulty calibration)
Design o f  best test (see Test design)
Diagnosing misfit, 170 - 180 
Difficulty 5 and d (see Item difficulty calibra

tion)
Discrimination (see Item discrimination index)

Editing data, 31 - 34, 47 - 49 
Efficiency, 74 - 75, 139, 161,164 
Equating test forms (see Linking test forms)
Error coefficient Cf ,  135 - 140, 146, 193 - 194, 

214
Estimation methods, ix - x, 15 - 20, 44 - 45

PROX, 21 - 22, 28 - 45, 50 - 56, 60 - 62, 143, 
149 -150 

UCON, 56 - 65, 142 - 143,148 - 150

UFORM, 143 - 151, 214, 216 
Expansion factors X and Y , 21 - 22, 30, 40 - 44, 

50, 62, 148 
Extending a variable, 87 - 93

Fit:
analysis, 2 - 4, 23 - 24, 66 - 82
computer example, 52 - 55, 58 - 59, 80 - 82
correcting misfit, 181 - 190
crude, 124 - 125
diagnosing misfit, 170 - 180
hand example, 69 - 79
item fit, 52 - 55, 58 - 59, 77 - 79, 121 - 125 
link fit, 93 - 96, 98 
loop fit, 100
person fit, 2 - 4 , 7 6 -  77, 121 - 125, 165 - 180, 

205 - 209
response fit, 69 - 77, 121 - 125,165 - 180 
ruler for fit analysis, 208 - 209 
summary o f fit analysis, 79 - 80 
table for fit analysis, 73, 216 

Fumbling (see Response pattern)

Guessing (see Respone pattern)

Identity line, 89, 92 - 95 
Individualized testing (see Tailoring)
Information I f|, 16 - 17, 73 - 75, 135, 161 - 164
Intensifying a variable, 87 - 94
Interval distribution o f items or persons,

130- 131,133- 134,137,139
Item:

characteristic curve, 12 - 14, 51 - 53, 58 - 59 
difficulty calibration 5 and d, 17 - 22, 25, 30, 

34 - 38, 40 - 42, 54 - 55, 61 - 65 
discrimination, ix - x 

index, 52 - 55 
fit, 52 - 55, 58 - 59, 77 - 79,121 - 125 
p-value, viii, xi - xiii, 25 - 26 
point biserial, viii, x, 26 
score Sj, 10, 18 - 22, 32 - 35 

Item bank building, 98-118 
KCT example, 106 - 118 
chain, 99 
link, 96 - 106 
loop, 100
network, 101 - 103 
web, 102-106 

Item calibration quality control, 121 - 125 (see 
Item fit)

KCT (see Knox Cube Test)
Knox Cube Test KCT, 28 - 29 

banking KCTB, 106 - 118 
criterion referencing, 118 - 121, 206 - 207 
KCTB, 106 - 121

2 2 0
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norm referencing, 120, 126 - 128, 198 - 200, 
204, 206 • 207 

response matrix, 31 - 33, 66 - 69 
variable definition, 83 - 91, 119 -120,

206 - 207

Least measurable difference LMD, 132, 135, 
192 -198

Least observable difference LOD, 132, 193, 
194,196

Least significant difference LSD, 195 - 196 
Linearity, vii, 7 - 9, 15, 25, 27,191 - 192 
Linking test forms, 96 - 106

common item, 108 - 109, 112 - 118 
common person, 107 - 112 

Link, 96 - 98 ( see Item  bank building) 
fit, 94 - 96 

LO D  ( see Least observable difference)
Logistic:

distribution, ix - x 
function, 15, 25, 27, 36 
ogive scaling factor 1.7, 21 - 22 

Logit, 16 - 17, 25, 27, 30, 34, 36, 191 - 192 
Log odds (see L og it)
Loop , 100 (see Item  bank building) 

fit, 100
LM D (see Least measurable difference)
LSD (see Least significant difference)

Map (see Variable defin ition )
Mastery referencing (see Scale CH IP )
Mean square residual v, 23 - 24, 26, 53, 71 - 74, 

76 - 82 ,165  - 170 
Measure J3 and b (see Person ability measure) 
Measurement target (see Target o f  measurement) 
Measuring test, 131 - 133 
M isfit (see F it)

Network, 101 - 103 (see Item bank building) 
N IT  (see Scale N IT )
Nonlinearity o f  test scores, 7 - 9 
Norm  referencing, 120 - 121, 126 - 128, 151, 

198 - 200, 204, 206 - 207 
Normal approximation estimation PRO X,

21 - 22, 28 - 45, 50 - 56, 60 - 62, 143, 
149 - 150 

computer algorithm, 6 1 - 6 2  
computer example, 46 - 55 
hand algorithm, 21 - 22, 34, 38 - 40, 42, 44 
hand example, 30 - 44 
hand vs. computer, 5 5 - 5 6  
PR O X  vs. UCON, 60 - 61 

Normal distribution o f  items or persons, 21, 
130 -131 , 133 - 134, 137,139 

Normative scaling unit (see Scale N IT )

Objectivity, viii - x iii, 15, 141

Person:
ability measure 0 and b, 17 - 22, 134 - 136, 

142 - 151
PRO X , 37 - 39, 43 - 44, 51, 56, 61 - 62, 

143,148 - 149 
UCON, 57, 61 - 65, 142 - 143, 147 - 149 
UFO RM , 143 - 147, 149 - 151, 212

characteristic curve, 12 - 1 4
fit, 2 - 4, 76 - 77, 121 - 125, 165 - 180,

205 - 209
response x vi, 9 - 14, 68 - 77, 165 - 180 
score rv, 4 - 10, 18 - 22

converting to measure br, 21 - 22, 27, 
37 - 40, 43 - 44, 61 - 65, 142 - 151 

noniinearity, 7 - 9
relative score f r, 132, 134, 140, 144 - 146, 

149, 193 - 194 
test dependence, 4 - 6 

Person measure quality control, 165 - 170 (see 
Person fit )

Plodding (see Response pattern)
Precision o f  measure (see Standard error person 

measure)
Probability unit (see Scale CH IP)
PR O X  (see Normal approximation estimation)

Quality control, 121 - 125, 165 - 170 (see F it) 
Quick norms, 126 -128

Rasch model, 9 - 27
Reliability o f  calibration (see Standard error item 

calibration)
Reliability o f  measure (see Standard error person 

measure)
Reporting forms, 205 - 209 
Residual (see Standardized residual)
Response: 

curve, 9 - 1 4
fit, 69 - '5 ,  121 - 125, 165 - 180 
improbability, 7 1 - 7 4  
K C T  matrix, 31, 33, 66 - 69 
model, 9 - 1 4  
pattern, 2 - 4 ,170  - 180

fumbling, 171, 176, 178 - 180, 188 - 190 
guessing, 171, 174 - 177, 181, 185 - 187 
plodding, 171, 176, 178 - 180, 188 
sleeping, 171 - 177, 181 - 184 

Response probability scaling unit (see Scale 
CH IP)

Sample-free item calibration, vii - xiii, 15, 20, 
25 - 26 

Scale, 191-204
additive factor a, 191 - 192 
CHIP, 201 - 204
linear, vii, 7 - 9, 25, 27, 191 - 192 
LM D , 132, 135, 192 - 198 
logit, 16 - 17, 25, 27, 30, 34, 36, 191 - 192 
N IT , 198 - 200, 204 
SIT, 199 - 202, 204 
spacing factor y, 191 - 198 

Score (see Test score)
S IT  (see Scale S IT )
Sleeping (see Response pattern)
Spacing factor y  ( see Scale spacing factor) 
Standardized mean square t, 77 - 80, 165 - 169 
Standardized residual z and z2, 23 - 24, 70 - 80, 

121 - 125, 165 - 180, 205 - 209 
Standard error:

coefficient Cf, 135 - 140, 146, 193 - 194, 214
identify line, 89, 92 - 95
item calibration SE(dj), 21 - 22, 25 - 26,

61 - 65, 143 - 146,192
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link, 96 - 98 
loop, 100
person measure SE(bv ), Sv, SEM and S,

21 - 22, 27, 61 - 65, 132 - 136, 140, 192, 
194 - 198 

PRO X item calibration, 21 - 22  
PRO X  person measure, 21 - 22 
spacing factor, 195 

Substantive scaling unit ( see Scale S IT )

Tailoring, 151 - 164
performance, 156 - 160, 164 
self, 161 - 164 
status, 153 - 156, 164 

Target o f measurement, 129 -131
dispersion S, 129 - 131, 133 - 134, 137 - 140 
distribution D, 130 - 131, 134 - 139 
location M, 130 - 131, 137 - 139 

Test design, 131 - 140
distribution o f  items or persons, 130 - 139 
height H and h, 132 - 133, 137 - 140 
length L, 132 - 133, 136 - 140 
operating curve, 132 - 133, 138 
shape, 132 - 140
width W and w, 132 - 133,136 - 140 

Test-free person measurement, vii - xiii, 15, 20, 
27,141

Test score r, 2 - 10, 18 - 20, 27
converting to measure br, 142 - 164 

PROX, 21 - 22, 27, 37 - 40, 43 - 44,
61 - 62,143 

UCON, 62 - 65, 142 - 143 
UFORM, 143 - 151, 212 

Traditional test statistics, 24 - 27

UCON (see Unconditional maximum likelihood 
estimation)

Unconditional maximum likelihood estimation 
UCON: 

computer example, 56 -61  
computing algorithm, 62 - 65 
UCON vs. PROX, 60 - 61 

UFORM  (see Uniform approximation estimation) 
Uniform approximation estimation UFORM, 

143 - 151,212, 214

Validity o f  calibration (see Item fit )
Validity o f  measurement (see Person fit )
Variable definition, 1 - 4, 98 - 106 

KCT, 83 - 91, 119 - 120, 206 - 207

Web, 102 - 106 (see Item bank building) 
complete, 103 - 104 
incomplete, 104 - 106





NOTATION

for Persons v = 1, N

0V ability parameter of person v
bv statistic estimating 0V
SE(bv) standard error of statistic bv 
rv observed test score of person v

br ability estimated for score r
nr number of persons with score r

yv test score logit of person v
y r logit of test score r
y. sample mean of person logits
V sample variance of person logits
X person logit expansion factor

to adjust for test width

for Items i = 1, L

6j difficulty parameter of item i
dj statistic estimating 5j
SE(dj) standard error of statistic dj 
Sj observed sample score of item i

Pj sample p-value of item i

Xj sample score logit of item i

x. test mean of item logits
U test variance of item logits
Y  item logit expansion factor

to adjust for sample spread

xvi response of person v to item i
p (x vi | /3V,5j } probability of response xvi given 0V and 5j 
7Tvj probability of a correct response i.e. xvj = 1
pvi estimate of 7rvj based on bv and dj
pri estimate of 7rvj for score r based on br and dj
lvi information in xvi about person v and item i
zui standardized residual of xvj from estimated expectation

vv mean square residual for person v v, mean square residual for item i
fv degrees of freedom in vv fj degrees of freedom in Vj
tv standardized mean square vv t ; standardized mean square v(

Exceptions to this notation occur when locally convenient, particularly with "s",



N O TA TIO N
(continued)

for Sample of N persons for Test of L items

M mean person ability H mean item difficulty
m estimate of M h estimate of H
0 standard deviation of person ability c0 standard deviation of item difficulty
s estimate of a W item difficulty range

w estimate of W

e Napierian or natural log base e = 2 .7 1 8 2 8 ...

g(0v ' ® i)
exp (p _ g j  base e raised to the exponent (0V -  &,)

M
£  (y i) continued sum of y: over j = 1, M
j 1 '

M
n  (Yj) continued product Vj over j = 1, M

fin(y) natural log of y

E {y } expected value of y

V  {y} variance of y

1.7 coefficient which brings the logistic
2.89 = 1.72 cumulative distribution ogive to within 0.01
8.35 = 2 .892 = 1.74 of the normal cumulative distribution ogive

RASCH M O DEL  

For a correct response xvj = 1

P{xvi = 1 |0 W. 5 j}  = exp (0v - 5 j ) / [ 1  + exp (0v - 5 j ) ]  •

For an incorrect response xvj = 0

P{xvi = 0  |0 V, 5j> ■ 1/(1 + exp (0V -  5j) l  .

For either response xvi = 1 or 0

P{xvi |0 V, 5j} = exp [xvi(0v “  5j) l  / (1 +exp(0v - 8 , ) ]  .




